选择特殊符号
选择搜索类型
请输入搜索
电阻和电导存在倒数关系
电导率:如水的导电性即水的电阻的倒数,通常用它来表示水的纯净度。
电导率是物体传导电流的能力。电导率测量仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。根据欧姆定律,电导率(G)--电阻(R)的倒数,是由电压和电流决定的。
电导率的基本单位:西门子(S),原来被称为姆欧,取电阻单位欧姆倒数之意。因为电导池的几何形状影响电导率值,标准的测量中用单位电导率S/cm来表示,以补偿各种电极尺寸造成的差别。单位电导率(C)简单的说是所测电导率(G)与电导池常数(L/A)的乘积.这里的L为两块极板之间的液柱长度,A为极板的面积。
=ρl=l/σ
(1)定义或解释 电阻率的倒数为电导率。σ=1/ρ (2)单位: 在国际单位制中,电导率的单位是西门子/米。 (3)说明 电导率的物理意义是表示物质导电的性能。电导率越大则导电性能越强,反之越小。
各种物质的电导率可以差许多个数量级,导体与绝缘体只有相对含义。例如,纯水与电解质溶液相比是绝缘体,但与玻璃相比,又具有一定的导电性,因为它能电离出少量的氢离子和氢氧根离子。对于电解质溶液来说,溶液的浓度对电导率有很大影响。
稀溶液的电导测定可以达到很高的精度,可用来检验蒸馏水和去离子水是否合格。电导法还可测量微溶盐的溶解度、弱电解质的电离常数和海水的总盐度。电导法所得的结果是溶液的总体电导,对一般离子的分辨能力很差,只有氢离子和氢氧根离子是例外。利用这一特性,可以进行电导滴定,以分别测量混合酸中强酸和弱酸的含量。如果电导法与色谱法联用,先通过离子交换树脂柱分离各种离子,再用电导法测量其浓度,可以获得精确度高的结果,此法称为离子色谱法。
电阻率:是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。国际单位制中,电阻率的单位是欧姆·米,常用单位是欧姆·平方毫米/米。 电导率:...
电阻率的倒数就是电导率,它们之间的关系成倒数关系。
电导率σ 电阻率ρ σ=1/ρ 高纯水电导率:σ=0.1~1.0uS/cm;
试论电缆导体电阻和电阻率误差相关问题
在分析电缆的电阻和电阻率基础上,探讨了标称电阻率和实测电阻率相关误差问题,并提出相关缩小检测误差的方法,并论述了如何选择验收考核,希望对于电缆导体电阻和电阻率测量具有一定帮助。
电线绝缘电阻及导体电阻检测
电线绝缘电阻及导体电阻检测 (广东产品质量监督检验研究院, 广州 510330) 摘 要:导体电阻及绝缘电阻是电线的电性能检测 重要项目之一,是考核导体、绝缘材料电气绝缘性能 的重要指标,通过测定绝缘电阻不仅可以发现生产过 程中的工艺缺陷,也能考核材料的好坏。同时根据实 验室要求,对测试绝缘电阻的不确定度进行研究。 关键词:电线绝缘电阻 ;绝缘电阻 ;测试不确定度 ; 导体电阻 0 引言 电线电缆是重要工业产品, 现代社会离不开电线 电缆的存在,电线电缆不仅用于电力的输送,同时也 能输送信号。电线的结构比较简单,主要是导体、绝 缘层、护套层、内衬层或隔离层以及铠装层构成,对 于电线来说,绝缘及护套质量的好坏,对于使用的寿 命及安全有至关重要的意义。 其中绝缘及护套材料的电气性能是重要的质量 指标,绝缘性能越好,电线能承受的电压则越高,越 不容易泄露电流。因此本文通过标准的检测方法,及 检验
1. 电导和电导率
金属的导电能力常用电阻来衡量.电阻越小,导电能力越强.电解质溶液的导电能力虽然也可以用电阻来衡量,但更习惯采用的是电导.电导即电阻的倒数.用符号G表示,
(7.4-1)
电导的SI单位是"西门子"(Siemens),简称"西",用S表示.显然,导体的电导越大,导电能力越强.
因为
所以
令 κ= (7.4-2)
则 G=κ (7.4-3)
其中κ称为电导率,即电阻率的倒数.SI单位是"西每米"(Sm-1).对于电解质溶液而言,式中A表示两个相同电极中一个电极的面积,l表示两平行电极间的距离.电导率则表示面积为1m2,相距1m的两平行电极板之间包含的溶液的电导.电解质溶液的电导率与电解质的种类,溶液的浓度及温度等因素有关.图7-7是几种电解质溶液的电导率随浓度的变化曲线.可以看出:
(1)同温同浓度下强酸和强碱因能解离出H+和OH-,电导率最大,盐类次之.弱电解质因为在溶液中不完全解离,电导率最小;
(2)不管是弱电解质还是强电解质,其电导率随浓度的变化都是先增大,越过极值后又减小.这是因为浓度增大时参与导电的离子数目增多,使导电能力增强,随着浓度的增大,离子间的相互作用逐渐增强,反而又使导电能力减小减弱.弱电解质的电导率随浓度的变化不明显,是因为浓度增大时,虽然电解质分子数增加了,但解离度却随之减小,溶液中离子数目变化并不大.
了解这些情况对于生产及科学研究中合适地选用电化学装置中的电解质是有帮助的.
2.摩尔电导率
金属导体只靠电子导电,而且导体中电子浓度很高,所以只要把导体的几何形状固定了,就完全能够显示出各种导体导电能力的大小,电导率就足以反映出不同导体在导电能力上的差别.电解质溶液则不然,它们的电荷载体是离子,各种离子的电荷数可能不同,单位体积中离子的数量(浓度)也可以不一样,情况比较复杂.因此为了对不同电解质溶液的导电能力进行比较,除了应规定出它们的几何形状之外,还要对导体中离子的数量作出规定,于是提出了摩尔电导率的概念.定义如下:
把含有1mol电解质的溶液置于相距1m的两平行电极板之间时所具有的电导,叫摩尔电导率,用符号∧m表示.若电解质溶液的物质的量浓度为c(单位为molm-3),则含有1mol电解质溶液的体积Vm为1/c,单位为m3mol-1,由图7-8可以得到
∧m=Vmκ= (7.4-4)
∧m的单位为Sm2mol-1.据式(7.4-4),又可把摩尔电导率定义为单位浓度溶液的电导率.
由于摩尔电导率涉及物质的量浓度,所以在表示电解质溶液的摩尔电导率时,应注明"摩尔"的基本单元.通常用元素符号或化学式表示.如298.15K时,
∧m(CuSO4)=14.34×10-3Sm2mol-1
∧m(CuSO4)=7.17×10-3Sm2mol-1
显然,∧m(CuSO4)=2∧m(CuSO4)
在用摩尔电导率比较不同电解质溶液的导电能力时,除了要求溶液的温度和浓度相同外,应使其基本单元所带的电荷相等.例如,要比较氯化钾和硫酸铜溶液的导电能力时,应比较同温同浓度时∧m(KCl)和∧m(CuSO4)的大小.
图7-9是25℃时一些电解质在水溶液中的∧m随的变化曲线.可以看出,无论是强电解质还是弱电解质,∧m均随浓度的减少而增大,但两者的变化程度差别很大.
对于强电解质,因其在溶液中完全解离,所以在其物质的量固定为1mol的前提下,浓度的改变对离子的数量没有影响,但却影响离子之间的作用力.当浓度降低时,离子间引力减弱,离子运动速率增加,致使∧m随浓度的减小而缓慢增加.德国化学家科尔劳施(kohlrausch)由大量实验结果发现,浓度极稀(通常c<0.001moldm-3)的强电解质溶液的摩尔电导率与浓度的平方根有线性关系(见图7-9中的虚线),用式子表示为:
∧m=-A (7.4-5)
式中A在一定温度下,对给定的电解质和溶剂而言是一个常数,是直线的截距,由直线外推至与纵轴相交处得到.可见表示的是电解质溶液在无限稀释(c→0)时的摩尔电导率,故称为无限稀释摩尔电导率(又称为极限摩尔电导率).是电解质的一个特性参数,反映了电解质在离子之间没有作用力时所具有的最大导电能力.
对于弱电解质,因其在溶液中部分解离,且解离度受浓度的影响,所以当浓度降低时,虽然溶液中电解质的数量未变,仍为1mol,但解离度却增大了,离子的数量增多了,致使∧m随浓度的减少而增加.当溶液很稀时,由于解离度随浓度的减小而迅速增大,致使∧m急剧增加,∧m与c之间不存在如式(7.4-5)的简单关系.因此弱电解质的无法用外推法求得,科尔劳施的离子独立运动定律解决了这个问题.
3.离子独立运动定律和离子摩尔电导率
1875年,科尔劳施在研究极稀电解质溶液时,根据大量实验数据发现一个规律,即在无限稀释的溶液中,所有的电解质全部解离,而且离子间一切相互作用均可忽略,每一种离子都是独立运动的,不受其它共存离子的影响.因此电解质溶液的可以认为是正负离子摩尔电导率λ∞ 之和,即对于任意电解质Mν+Xν-都有下列关系式
(7.4-6)
此式称为离子独立运动定律,式中,分别表示正,负离子的无限稀释摩尔电导率.显然,如果知道了各种离子的,则无论是强电解质还是弱电解质,均可直接用此式计算.
离子的摩尔电导率可由实验测定.下表列出了298K时无限稀释的水溶液中一些常见离子的摩尔电导率.
由于水中含有各种溶解盐类,并以离子的形式存在。当水中插入一对电极时,通电之后,在电场的作用下,带电的离子就产生一定方向的移动。水中阴离子移向阳极,使水溶液起导电作用,水的导电能力的强弱程度,就称为电导(或电导度),用G表示。电导反映了水中含盐量的多少,是水的纯净程度的一个重要指标,水越纯净,含盐量越少,电阻越大,电导越小,超纯水几乎不能导电。电导是电阻的倒数,即G=L/R 式中R—电阻,单位欧姆(Ω) G—电导,单位西门子(S) 1S=103mS=106µS 因R=ρL/F,代入上式,则得到:G=IF/(ρL)对于一对固定电极来讲,二极间的距离不变,电极面积也不变,因此L与F为一个常数。令:J=L/F,J就称为电极常数,可得到G=I2/(ρJ)式中:K=1/ρ就称为电导率,单位为S/cm。1S/cm=103mS/cm=106µS/cm。电导率K的意义就是截面积为lcm2,长度为lcm的导体的电导。当电导常数J=1时,电导率就等于电导,电导率是不同电解质溶液导电能力的表现。电导率K,电导G,电阻率ρ三者之间的关系如下:K=JG=I/ρ 式中J为电极常数,例如:电导率为O.1µS/cm的高纯水,其电阻率应为:ρ=I/K=1/0.1×106=10MΩcm
电阻率:是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。国际单位制中,电阻率的单位是欧姆·米,常用单位是欧姆·平方毫米/米。
电导率:水的导电性即水的电阻的倒数,通常用它来表示水的纯净度。
电导率是物体传导电流的能力。电导率测量仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。根据欧姆定律,电导率(G)--电阻(R)的倒数,是由电压和电流决定的。
电 导率的基本单位是西门子(S),原来被称为姆欧,取电阻单位欧姆倒数之意。因为电导池的几何形状影响电导率值,标准的测量中用单位电导率S/cm来表示, 以补偿各种电极尺寸造成的差别。单位电导率(C)简单的说是所测电导率(G)与电导池常数(L/A)的乘积.这里的L为两块极板之间的液柱长度,A为极板 的面积。
=ρl=l/σ
(1)定义或解释 电阻率的倒数为电导率。σ=1/ρ (2)单位:在国际单位制中,电导率的单位是西门子/米。 (3)说明 电导率的物理意义是表示物质导电的性能。电导率越大则导电性能越强,反之越小。
由于水中含有各种溶解盐类,并以离子的形式存在。当水中插入一对电极时,通电之后,在电场的作用下,带电的离子就产生一定方向的移动。水中阴离子移向阳极,使水溶液起导电作用,水的导电能力的强弱程度,就称为电导(或电导度),用G表示。电导反映了水中含盐量的多少,是水的纯净程度的一个重要指标,水越纯,含盐量越少,电阻越大,电导越小,超纯水几乎不能导电。电导是电阻的倒数,即
G=L/R
式中R-电阻,单位为欧姆(Ω)
G-电导,单位西门子(S) 1S=10^3Ms=10^6μS
因R=ρ*L/F,代入上式,则得到:
G=I/ρ*I/J=K*I/J
对于一对固定电极来讲,二极间的距离不变,电极面积也不变,因此L与F为一个常数。令:J=L/F,J就称为电极常数,可得到
G=I/ρ*I/J=K*I/J
式中:K=1/ρ就称为电导率,单位为S/cm。1S/cm=10^3m S/cm=10^6 μS/cm电导率K的意义就是截面积为1cm^2,长度为1cm的导体的电导。当电导常数J=1时,电导率就等于电导,电导率是不同电解质溶液导电能力的表现。
电导率K,电导G,电阻率ρ三者之间的关系如下:
K=J*G=1/ρ
式中J为电极常数,例如:电导率为0.1μS/cm的高纯水,其电阻率应为:
ρ=1/K=1/0.1*10^6=10MΩ.cm
倒数,但是超纯水测试不容易测准,因为会有溶解CO2的影响,而且电极本身的校正也是很重要的
简单的说一下,水中的盐份和离子具有导电能力,当插 入一对电极之后,水中的离子便会电极之间发生定向移动,因此产生导电效应。水质越好,水中杂质越少(盐份越低),导电能力越弱,因此电阻率越大,由于电阻率是电导率的倒数关系,因此电导率就越低。相反水质越差,含盐越多,导电能力越强,电阻率越小,因此电导率就越大。
前者能够导电是因为电解质在水溶液中能够电离,生成阳离子和阴离子,在电场作用下它们将向相反方向移动,形成电流,产生导电现象。因此电解质溶液是一种离子导体。离子导体还包括熔盐、固体电解质、离子交换树脂膜等,所以电解质泛指有一定离子导电性的物相。物体导电能力用电导L度量,电导是电阻的倒数,单位是欧-1,也称西(门子)。物体的电导与形状有关。实验表明,电导与物体的长度l成反比,与截面积A成正比:式中κ为比例常数,称为电导率,它表示面积为1厘米2,长度为1厘米的单元体积的物体的电导,电导率的单位是欧-1·厘米-1或西/厘米。几种典型物质的电导率从上表可见,各种物质的电导率可以差很多个数量级,导电体与绝缘体只有相对含义。例如,纯水与电解质溶液相比是绝缘体,但与玻璃相比,它又具有一定的导电性,因为它能电离出少量的H 和OH-。对于电解质溶液来说,溶液的浓度对电导率有很大影响,图中表示若干典型的电解质溶液的κ与当量浓度Ceq的关系。稀溶液的电导测定可达到很高的精密度,可用来检验蒸馏水和去离子水是否合格,电导法还可测量微溶盐的溶解度、弱电解质的电离常数和海水的总盐度。电导法所得的结果是溶液的整体电导,对一般离子的分辨能力很差,只有H 和OH-是例外。利用这一特性,可进行电导滴定,以分别测量混合酸中强酸和弱酸的含量。如果电导法与色谱法联用,先通过离子交换树脂柱分离各种离子,再用电导法测量其浓度,可以获得精确度高的结果,此法称为离子色谱法。 2100433B