选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

奥氏体合金钢

奥氏体合金钢是晶体,其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。

奥氏体合金钢基本信息

奥氏体合金钢其他类型

奥氏体合金钢马氏体

它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。

奥氏体合金钢铁素体

由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体.2100433B

查看详情

奥氏体合金钢造价信息

  • 市场价
  • 信息价
  • 询价

合金钢

  • ‘" Hastelloy C-276/C22/B3/G30
  • kg
  • 13%
  • 成都金亿元商贸有限公司
  • 2025-07-22
查看价格

合金钢-活节

  • 品种:合金钢-活节;外径De(mm):DN100;描述:衬塑管件;材质:合金钢;
  • 佳洁
  • 13%
  • 长沙市谷英水暖设备贸易有限公司
  • 2025-07-22
查看价格

合金钢

  • DN15-DN2000 R=1D,R=1.5D,R=2D/型号:108*6 材质:碳
  • 13%
  • 阜新市鹏鑫管道物资有限公司
  • 2025-07-22
查看价格

合金钢-活节

  • 品种:合金钢-活节;外径De(mm):DN80;描述:衬塑管件;材质:合金钢;
  • 佳洁
  • 13%
  • 长沙市谷英水暖设备贸易有限公司
  • 2025-07-22
查看价格

合金钢-活节

  • 品种:合金钢-活节;外径De(mm):DN80;描述:衬塑管件;材质:合金钢;
  • 佳洁
  • 13%
  • 长沙市谷英水暖设备贸易有限公司
  • 2025-07-22
查看价格

自发电一焊机

  • 305A
  • 台班
  • 韶关市2010年8月信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2012年1季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2011年4季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2011年2季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 广州市2011年1季度信息价
  • 建筑工程
查看价格

合金钢网兜

  • 合金钢网兜
  • 100
  • 3
  • 中档
  • 含税费 | 含运费
  • 2025-02-21
查看价格

合金钢

  • 合金钢
  • 10
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2015-08-19
查看价格

合金钢

  • 规格 810×750×2100 材质 42CrMo
  • 8989
  • 1
  • 中档
  • 不含税费 | 不含运费
  • 2015-11-04
查看价格

合金钢

  • 254SMO(4mm)
  • 15
  • 1
  • 不含税费 | 不含运费
  • 2011-05-03
查看价格

合金钢

  • C276(2mm)
  • 12
  • 1
  • 不含税费 | 不含运费
  • 2011-05-03
查看价格

奥氏体合金钢形成原理

组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体。

查看详情

奥氏体合金钢常见问题

查看详情
第七章低合金钢和合金钢 第七章低合金钢和合金钢

第七章低合金钢和合金钢

格式:pdf

大小:29KB

页数: 3页

第五章 一、名词解释 1.合金元素 为了改善钢的某些性能或使之具有某些特殊性能,在炼钢时有意加入的元素,称为合金 元素。 2.合金钢 含有一种或数种有意添加的合金元素的钢,称为合金钢。 3.耐回火性 淬火钢件在回火时抵抗软化的能力,称为耐回火性 (或回火稳定性 )。 4.二次硬化 铁碳合金在一次或多次回火后提高其硬度的现象称为二次硬化。 5.不锈钢 不锈钢是指用来抵抗大气腐蚀或能抵抗酸、碱、盐等化学介质腐蚀的钢。 6.耐热钢 耐热钢是指在高温下不发生氧化,并且有较高热强性的钢。 二、填空题 1. 低合金钢按主要质量等级分为 普通质量低合金 钢、 优质低合金 钢和 特殊质量低合金 钢。 2. 合金钢按主要质量等级可分为 优质合金 钢和 特殊质量合金 3. 特殊物理性能钢包括 永磁 钢、 软磁钢 钢、 无磁 钢和 高电阻 钢等。 4.机械结构用钢按用途和热处理特点 ,分

合金钢全部课件 合金钢全部课件

合金钢全部课件

格式:pdf

大小:4.9MB

页数: 39页

合金钢全部课件

奥氏体高合金钢简介

奥氏体

奥氏体是碳溶解在γ-Fe中的间隙固溶体,。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。2100433B

查看详情

奥氏体化处理铸件奥氏体化处理

高铬铸铁铸态基体组织通常不是单一组织,含有奥氏体、珠光体,厚大缓冷铸件中还存在一些二次碳化物以及少量其他非固溶相。为了达到硬化目的,淬火第一个步骤就是将铸件加热超过AC3,保温一定时问后,使铸态基体组织转变成为单一的奥氏体组织。这一过程称为奥氏体化。

铸态基体组织对奥氏体化过程有一定影响。因为不同相组分在奥氏体化温度下的转变和元素溶解情况是不相同的。例如层状珠光体的碳扩散距离短,易于分解,在奥氏体化过程中能较快达到固溶体的成分平衡。珠光体基体高铬铸铁能在较短加热时间内获得均匀的奥氏体组织,因此规定高铬铸铁件淬火前实行预珠光体化处理是有益的。

高铬铸铁件加热到AC1度后,基体局部组织开始发生点阵改组,出现α→γ转变。随温度增高,γ转变量逐渐增加。理论上铸件温度达到AC3,转变应该停止。但是,实际测定结果表明,铸件加热到稍高于AC3温度进行奥氏体化,α→γ转变的速度比较缓慢,即使保温时间很长,也难以使基体全部成为单一奥氏体组织。此外生成的奥氏体组织化学成分很不均匀,并且含有许多未溶碳化物以及其他熔点较高的杂质。已发现细小的碳化物常常成片弥散分布。这些不纯物不但影响过冷奥氏体的转变,而且也会使转变产物组织均匀性显著下降,最终导致铸件力学性能降低。

加热温度超过AC320~30℃,α→γ转变才开始逐渐趋于停止。高铬铸铁通常采用的奥氏体化温度超过AC370~120℃以上。这样的温度既是为了奥氏体组织充分均匀化,也是进行脱稳处理的需要。

确定某一铸件的奥氏体化温度,需要知道该铸件的AC3温度。但是高铬铸铁含有多种合金元素,直接影响AC3温度,难以写出各元素质量分数对AC1和AC3温度综合影响的表达式。

铸件的奥氏体化温度可选940~960℃,
铸件奥氏体化温度以950~980℃为宜。

碳在奥氏体中的溶解度随奥氏体化温度提高而增加,适当提高奥氏体化温度会使淬火后马氏体的硬度上升。但是过度提高温度将产生相反效果。例如奥氏体化温度超过100℃以后,由于二次碳化物重新溶入奥氏体,使奥氏体含碳量增多、组织稳定性提高,淬火后铸件中残余奥氏体在基体中的体积分数可能超过70%。因此,高铬铸铁件奥氏体化温度不应超过980~1000℃。

铸件在炉内加热到预定的奥氏体化温度后开始计算奥氏体化保温时问。此时间过程包括:铸件整体达到奥氏体化温度所需时问、成分均匀化及二次碳化物析出所需时间。

奥氏体化所需时间中,成分均匀化所需时问比较长,铬、碳含量较高时需要的时间更长。其次是铸件结构所决定的铸件整体加热到奥氏体化温度所需时问。在炉内升温过程

中,铸件的实际温度总是滞后于炉子的测定温度,而且铸件的模数越高,滞后越显著。铸件表面温度向内部传导,是滞后的重要原因。据测定,二次碳化物析出时间并不长,一般高铬铸铁件整体达到奥氏体化温度后,20min即可结束析出过程。这可能与铸件加热过程中已有二次碳化物析出有关。

铸件具体的奥氏体化保温时间,可以这样计算:厚度25mm的铸件基本保温时间为2h,厚度每增加25mm保温时间增加1h。或根据铸件最大模数计算保温时间,1cm模数铸件保温时间2h,每增加1cm模数,增加0.5h。即:保温时间=2h 0.5h/1cm模数.

如果加热前铸件的基体组织为珠光体,保温时间可适当减少。

查看详情

奥氏体化处理快速奥氏体化处理

原始奥氏体晶粒小的好处是,相变时产生的马氏体片也小。这不仅提高强度,而且也改善延性和韧性。一种能大大细化原奥氏体晶粒的方法是,用很快的速率加热至奥氏体化温度,并在刚高于AC3温度处作非常短时间的保温。这时可用瞬间过热来溶解碳化物,而又不至于粗化奥氏体晶粒。

由于马氏体晶粒细化以及淬火时位错密度的提高,这种处理能使屈服应力提高约10%。位错密度提高的原因还不很清楚,但在200℃以下的回火不能消除这些位错,于是冲击性能变差。提高回火温度确能消除位错,这时性能主要由极细的回火马氏体片尺寸控制。采用400℃以上的回火温度,快速热处理能改善冲击性能,但效果不很大。有证据表明,奥氏体形变热处理前,如果不用普通奥氏体化而采用快速热处理,强度虽只有少量提高,但韧性却大大提高。原因主要是快速奥氏体化产生的晶粒细。

快速奥氏体化处理,用于显著改善超高强度钢的强度和韧性,主要还局限于实验室研究。尚有许多控制上的问题存在。因为钢的热学参数使作这样热处理的零件截面尺寸受到限制,除非有的只要求表面薄层的性能。

查看详情

相关推荐

立即注册
免费服务热线: 400-823-1298