选择特殊符号
选择搜索类型
请输入搜索
《一种核聚变装置用CS超导电缆导体生产方法》涉及电线电缆生产制造技术领域,具体的说是一种核聚变装置用CS超导电缆导体生产方法。
核聚变装置用CS超导电缆导体是一种多级电缆,导体的第一级子缆由若干根铜线和若干根超导线材按照一定的绞合节距绞合构成,然后将若干根子缆单元再按照一定的绞合节距绞合构成二级子缆,同理再构成三级、四级子缆,最终绞制成五级极缆。超导电缆绞合后的股线达864根,每根超导股线直径为0.82±0.003毫米。由于各级缆外径、电缆的空隙系数对于导体的电磁性能影响较大,因此,CICC管装电缆导体绞缆过程对于电缆的外径、电缆的空隙率的控制要求是非常严格的。
由于核聚变装置用CS超导电缆导体各级缆的绞合节距是其它核聚变装置用超导电缆导体绞合节距的一半,核聚变装置用管状超导电缆的设计外径远小于电缆绞合的自然外径,在电缆的绞合中必须采取外径缩径措施,超导丝的材质比较硬,几乎没有伸长率,如按常规核聚变装置用导体缩径的办法对CS超导电缆的外径进行控制,在缩径中超导股线表面的铌镀层极易被刮掉,导致位于超导电缆表层的超导股线发生变形,甚至股线的超导丝断裂,由于位于表层股线的空隙率比里层股线的空隙率小,造成电缆空隙率不均衡,这样绞合出的超导电缆不符合CS超导电缆技术规范的要求。
图1是《一种核聚变装置用CS超导电缆导体生产方法》的生产流程图。
超导电缆里面的导体既不是镀银铜丝,也不是镀银铝丝。 1996年 改进高温超导电线的研究工作取得进展,制成了第一条地下输电电缆。欧洲电缆巨头皮雷利电缆公司、美国超导体公司和旧金山的电力研究所的工人,共同...
您好: 高温超导电缆,英语全称High-Temperature Superconducting Power Cable,它由电缆芯、低温容器、终端和冷却系统四个部分组成。其中电缆芯是高温超导电缆的核心...
利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读&qu...
2018年12月20日,《一种核聚变装置用CS超导电缆导体生产方法》获得第二十届中国专利优秀奖。
如图1所示的一种核聚变装置用CS超导电缆导体生产方法,它包括以下步骤:
步骤一、一级缆绞合,使用单绞机对两根0.82±0.003毫米超导股线和一根0.82±0.003毫米软铜线进行绞合,绞合方向为右向,绞合节距为20-25毫米,超导股线和软铜线的放线张力值控制在18-20牛,绞合后超导丝表面镀层完好、无损;
步骤二、二级缆绞合,将步骤一所制备的一级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为44-54毫米,一级缆的放线张力值控制在43-45牛;
步骤三、三级缆绞合,将步骤二所制备的二级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为81-97毫米,二级缆的放线张力值控制在77-80牛;
步骤四、四级缆绞合,将步骤三所制备的三级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为150-170毫米,三级缆的放线张力值控制在150-200牛;
步骤五、紧压四级缆,步骤四所制备的四级缆外面重叠绕包1层规格为0.1*25毫米的铜带,重叠率为5±1%,绕包方向为左向,绕包率为70±5%;绕包好铜带后,采用六道辊压轮加一道整形钨钢模的紧压方式,对四级缆进行紧压,六道辊压轮采用一竖一横三组辊压方式,辊压轮的孔径分别为15.5毫米,15.5毫米,14.5毫米14.5毫米,13.8毫米,13.8毫米,整形钨钢模的孔径为13.9毫米;紧压后将包覆的铜带拆除,紧压后的四级缆外径为13.0-14.0毫米;
步骤六、绞合五级缆,将步骤五所制备的四级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为430-470毫米,四级缆的放线张力值控制在350-400牛;
步骤七:紧压五级缆,将步骤六所制备的五级缆外面重叠绕包1层规格为0.1*35毫米的铜带,重叠率为5±1%,绕包方向为左向;绕包好铜带后,采用十道辊压轮加一道整形钨钢模的紧压方式,对五级缆进行紧压,十道辊压轮采用一竖一横五组辊压方式,辊压轮的孔径分别为36.0毫米,36.0毫米,35.0毫米35.0毫米,34.0毫米,34.0毫米,33.0毫米,33.0毫米,32.5毫米,32.5.毫米,整形钨钢模的孔径为32.4毫米,辊压轮为尼龙材质;紧压后将包覆的铜带拆除,对电缆进行整形,所得五级缆的外经为32.4-32.9毫米。
为了满足四级缆、五级缆的外径要求,对绞合后的四级缆、五级缆必须进行紧压,为了防止在紧压过程中电缆外表面股线直接接触辊压轮,造成股线压扁受损,紧压前,在绞合好的四级缆、五级缆外面需要重叠绕包相应规格的铜带进行防护。
《一种核聚变装置用CS超导电缆导体生产方法》所述方法所制备的核聚变装置用CS超导电缆导体的各项性能指标完全满足ITER国际组织所颁布的技术规范要求,超导股线完好无损,电缆孔隙率均衡,导体表面无扁平压断等不良现象。
《一种核聚变装置用CS超导电缆导体生产方法》的目的是提供一种核聚变装置用CS超导电缆导体生产方法,以解决超导电缆在绞合紧压外径控制中超导股线镀层脱落、超导丝损伤断裂、空隙率不均匀的问题。
《一种核聚变装置用CS超导电缆导体生产方法》包括以下步骤:
步骤一、一级缆绞合,使用单绞机对两根0.82±0.003毫米超导股线和一根0.82±0.003毫米软铜线进行绞合,绞合方向为右向,绞合节距为20-25毫米,超导股线和软铜线的放线张力值控制在18-20牛,绞合后超导丝表面镀层完好、无损;
步骤二、二级缆绞合,将步骤一所制备的一级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为44-54毫米,一级缆的放线张力值控制在43-45牛;
步骤三、三级缆绞合,将步骤二所制备的二级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为81-97毫米,二级缆的放线张力值控制在77-80牛;
步骤四、四级缆绞合,将步骤三所制备的三级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为150-170毫米,三级缆的放线张力值控制在150-200牛;
步骤五、紧压四级缆,步骤四所制备的四级缆外面重叠绕包1层规格为0.1*25毫米的铜带,重叠率为5±1%,绕包方向为左向,绕包率为70±5%;绕包好铜带后,采用六道辊压轮加一道整形钨钢模的紧压方式,对四级缆进行紧压,紧压后将包覆的铜带拆除,紧压后的四级缆外径为13.0-14.0毫米;
步骤六、绞合五级缆,将步骤五所制备的四级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为430-470毫米,四级缆的放线张力值控制在350-400牛;
步骤七:紧压五级缆,将步骤六所制备的五级缆外面重叠绕包1层规格为0.1*35毫米的铜带,重叠率为5±1%,绕包方向为左向;绕包好铜带后,采用十道辊压轮加一道整形钨钢模的紧压方式,对五级缆进行紧压,紧压后将包覆的铜带拆除,对电缆进行整形,所得五级缆的外经为32.4-32.9毫米。
作为《一种核聚变装置用CS超导电缆导体生产方法》的进一步改进,所述步骤五中对四级缆紧压的六道辊压轮采用一竖一横三组辊压方式,辊压轮的孔径分别为15.5毫米,15.5毫米,14.5毫米14.5毫米,13.8毫米,13.8毫米,整形钨钢模的孔径为13.9毫米。
作为《一种核聚变装置用CS超导电缆导体生产方法》的更进一步改进,所述步骤七中对五级缆紧压的十道辊压轮采用一竖一横五组辊压方式,辊压轮的孔径分别为36.0毫米,36.0毫米,35.0毫米35.0毫米,34.0毫米,34.0毫米,33.0毫米,33.0毫米,32.5毫米,32.5.毫米,整形钨钢模的孔径为32.4毫米。
作为《一种核聚变装置用CS超导电缆导体生产方法》的更进一步改进,所述步骤七中所使用的辊压轮为尼龙材质。
在上述的各个步骤中,各级缆在绞合中必须严格控制各股线的放线张力,否则,如果张力过大,会造成超导丝由于拉伸过度而损伤,如果各股线张力不一致,造成绞合中各股线的绞入量不一致,绞合后电缆会产生弯曲等不良现象。
步骤一所述的一级缆绞合采用经过改造的φ630单绞机上进行绞合,该单绞机的特点是主动放线、主动退扭;放线张力自动检测自动反馈自动控制。绞合后的一级缆超导丝表面镀层完好、无损。
步骤二、步骤三所述的二级缆、三级缆绞合采用能够完全退扭的φ500/6型笼式绞线机绞合,该设备经过改造具有主动放线且张力能够自动控制,保证股线在绞合放出时张力恒定、可控。
步骤四、步骤六所述的四级缆、五级缆绞合采用具有完全退扭且经改造后具有主动放线、张力可控功能的φ1250/6笼式绞线机进行绞合。
为了满足四级缆、五级缆的外径要求,对绞合后的四级缆、五级缆必须进行紧压,为了防止在紧压过程中电缆外表面股线直接接触辊压轮,造成股线压扁受损,紧压前,在绞合好的四级缆、五级缆外面需要重叠绕包相应规格的铜带进行防护。
《一种核聚变装置用CS超导电缆导体生产方法》所述方法所制备的核聚变装置用CS超导电缆导体的各项性能指标完全满足ITER国际组织所颁布的技术规范要求,超导股线完好无损,电缆孔隙率均衡,导体表面无扁平压断等不良现象。
1.一种核聚变装置用CS超导电缆导体生产方法,其特征在于:它包括以下步骤:步骤一、一级缆绞合,使用单绞机对两根0.82±0.003毫米超导股线和一根0.82±0.003毫米软铜线进行绞合,绞合方向为右向,绞合节距为20-25毫米,超导股线和软铜线的放线张力值控制在18-20牛,绞合后超导丝表面镀层完好、无损;步骤二、二级缆绞合,将步骤一所制备的一级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为44-54毫米,一级缆的放线张力值控制在43-45牛;步骤三、三级缆绞合,将步骤二所制备的二级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为81-97毫米,二级缆的放线张力值控制在77-80牛;步骤四、四级缆绞合,将步骤三所制备的三级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为150-170毫米,三级缆的放线张力值控制在150-200牛;步骤五、紧压四级缆,步骤四所制备的四级缆外面重叠绕包1层规格为0.1*25毫米的铜带,重叠率为5±1%,绕包方向为左向,绕包率为70±5%;绕包好铜带后,采用六道辊压轮加一道整形钨钢模的紧压方式,对四级缆进行紧压,紧压后将包覆的铜带拆除,紧压后的四级缆外径为13.0-14.0毫米;步骤六、绞合五级缆,将步骤五所制备的四级缆用笼式绞线机进行绞合,绞合方向为右向,绞合节距为430-470毫米,四级缆的放线张力值控制在350-400牛;步骤七:紧压五级缆,将步骤六所制备的五级缆外面重叠绕包1层规格为0.1*35毫米的铜带,重叠率为5±1%,绕包方向为左向;绕包好铜带后,采用十道尼龙辊压轮加一道整形钨钢模的紧压方式,对五级缆进行紧压,紧压后将包覆的铜带拆除,对电缆进行整形,所得五级缆的外经为32.4-32.9毫米。
2.根据权利要求1所述的一种核聚变装置用CS超导电缆导体生产方法,其特征在于:所述步骤五中对四级缆紧压的六道辊压轮采用一竖一横三组辊压方式,辊压轮的孔径分别为15.5毫米,15.5毫米,14.5毫米14.5毫米,13.8毫米,13.8毫米,整形钨钢模的孔径为13.9毫米。
3.根据权利要求1或2所述的一种核聚变装置用CS超导电缆导体生产方法,其特征在于:所述步骤七中对五级缆紧压的十道辊压轮采用一竖一横五组辊压方式,辊压轮的孔径分别为36.0毫米,36.0毫米,35.0毫米35.0毫米,34.0毫米,34.0毫米,33.0毫米,33.0毫米,32.5毫米,32.5.毫米,整形钨钢模的孔径为32.4毫米。
国际核聚变装置用超导电缆绞缆技术优化研究
国际热核聚变实验堆计划是目前我国参与的最大的国际合作项目,CICC(Cable-In-Conduit Conductors)导体具有较低的交流损耗,是核聚变装置的首选导体。介绍了CICC导体的结构及其绞缆试制过程,确定了CICC导体绞缆工艺技术路线。多次绞缆试制表明,第五级子缆的绞制加工尤其是外径控制是整个CICC导体绞缆关键环节。多道辊压+定径哈夫模控制技术可有效地控制CICC绞缆的外径,并不对单线造成损伤。
应用第2代高温超导体的冷绝缘超导电缆输电导体层间均流技术
冷绝缘高温超导电缆的导电层一般设计为多层结构以满足大电流载流特性,但伴随层数的增加,超导体上的集肤效应会引起电缆输电导体各层电流分布不均匀的问题,从而造成电缆损耗增加和传输性能下降。采用基于动态惯性权重因子的粒子群优化算法,提出了电缆导体层电流层间均流优化的设计方法。应用第2代高温超导材料钇钡铜氧涂层导体,通过建立超导电缆的等效电路模型,考虑电场、磁场等约束因素,对一根1km长,110kV/3kA等级的冷绝缘高温超导电缆进行优化设计,获得了电缆本体结构参数及输电导体层和屏蔽层的电流分布。比较优化前后层电流的结果可知,优化后超导电缆各导体层电流与平均电流相比最大不平衡率小于3.5%,各屏蔽层电流达到均布,较好地实现了电缆各导体层电流均匀分布的优化目标。最后,超导模型样缆载流特性实验也验证了优化设计方法的有效性。
超导输电方法是一种采用超导电缆技术输送电力的方法。超导体能承载比普通的导体高很多数量级的电流密度,使用超导电缆输送电力可以达到单路几百万千瓦的输送功率,大幅度地提高了输电效率。这种输电电缆的磁场不高,可以实现工频交流输电。由于在实际使用中需要建立庞大的液氦低温系统,距离愈长,成本愈高。但自1987年以来,液氮温区新超导材料(亦称高温超导材料)的出现与发展,使超导输电技术的应用难度减小。
超导体具有强大的载流能力,高的电流密度和磁通密度,可以获得极高的能量密度,每单位体积的储能量比普通电容器储能高几个数量级。利用超导储能技术,可以作为特种脉冲电源,大规模地调节电力系统尖峰负载和抑制系统中的有害振荡。在系统中安装一个3000万焦耳的超导储能设备,可解决交流电和直流电并入输电网后所引起的低频振荡问题,运行证明,可得到满意的效果。 2100433B
1911年,荷兰莱顿大学的卡茂林-昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。
这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为"超导体"。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电压可以毫无阻力地在导线中形成巨大的电流,从而产生超强磁场。
1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感兴强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为"迈斯纳效应"。
后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然离开锡盘表面,慢慢地飘起,悬空不动。
迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超性。
为了使超导材料有实用性,人们开始了探索高温超导的历程,从1911年至1986年,超导温度由水银的4.2K提高到23.22K(OK=-273°C)。86年1月发现钡镧铜氧化物超导温度是30度,12月30日,又将这一纪录刷新为40.2K,87年1月升至43K,不久又升至46K和53K,2月15日发现了98K超导体,很快又发现了14°C下存在超导迹象,高温超导体取得了巨大突破,使超导技术走向大规模应用。
超导材料和超导技术有着广阔的应用前景。超导现象中的迈斯纳效应使人们可以到用此原理制造超导列车和超导船,由于这些交通工具将在无摩擦状态下运行,这将大大提高它们的速度和安静性能。超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本国开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。利用超导材料制造交通工具在技术上还存在一定的障碍,但它势必会引发交通工具革命的一次浪潮。
超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗,但由于临界温度较高的超导体还未进入实用阶段,从而限制了超导输电的采用。随着技术的发展,新超导材料的不断涌现,超导输电的希望能在不久的将来得以实现。
现有的高温超导体还处于必须用液态氮来冷却的状态,但它仍旧被认为是20世纪最伟大的发现之一。
超导电缆主要由电缆本体、终端以及低温制冷装置组成。
超导电缆本体包括电缆芯、电绝缘和低温容器,电缆芯是由超导体组成,它装在维持电缆芯所需低温的低温容器管中,低温容器管两端与终端相连。电缆芯的超导带在终端通过电流引线与外部电源或负载相联接。对高温超导电缆,电缆芯是由绕在骨架上的多层高温超导带材组成,超导带层间缠绕绝缘带,以降低电缆因电磁耦合引起的交流损耗。电缆的低温容器管采用具有高真空和超级绝热的双不锈钢波纹管结构,这种结构保证了高温超导电缆的柔性和保持夹层高真空度。对低温绝缘电缆,电绝缘包在导体层外侧,与导体层同处低温环境中。对常温绝缘电缆,电绝缘处在低温容器外侧,在绝缘层外再加电缆保护层。
终端是超导电缆与外部电气部件连接的端口,同时也是电缆低温部分与外部室温的过渡段,因此终端要求有很好的热绝缘,以保证超导电缆整体热损耗最小。同时,低温冷却装置还要通过终端冷却超导电缆芯的超导带材,保证超导体能在设计的运行温度下运行。另外,由于超导电缆导体层将通过电流引线与外部高电压母线连接,因此要求终端有相应的电绝缘水平。