选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 电气百科

一种发动机热测试液

《一种发动机热测试液》是蓝星环境工程有限公司于2010年1月25日申请的专利,该专利的申请号为2010101009151,公布号为CN101760185A,授权公布日为2010年6月30日,发明人是沈一飞、白剑利、王双田、郭廷冰、邱雪梅、沈妮、文措杰。 
《一种发动机热测试液》组成成份及其重量百分比为:乙二醇70~80%、脂肪族一元羧酸1.0~5.0%、直链脂肪族二元羧酸1.0~5.0%、三嗪骨架三元羧酸0.1~1.0%、芳香酸0.1~4.5%、复合缓蚀剂0.1~1.0%、水解聚马来酸酐0.1~0.5%、烯基胺类0.2~4.0%、碳酸环己胺0.2~2.0%、消泡剂0.001~0.2%、余量为去离子水。该发明可抑制和防止发动机在热测试过程中的腐蚀。具有独特的气相缓蚀技术,可用于防止发动机在热测试后的放置过程中由于残留液体、空气接触形成电位腐蚀而造成的锈蚀。兼具全有机酸型发动机冷却液缓蚀技术和气相缓蚀技术,稳定性好。 
2016年12月7日,《一种发动机热测试液》获得第十八届中国专利优秀奖。 

一种发动机热测试液基本信息

一种发动机热测试液技术领域

《一种发动机热测试液》属化工领域,尤其是涉及一种发动机热测试液。

查看详情

一种发动机热测试液造价信息

  • 市场价
  • 信息价
  • 询价

发动机

  • MZ202产品编号:MZ202;说明:附件,以上附件适用于MC/MD/MN2/NC/ND/HLF/HMC/HMD;规格:报警触点;额定电流A:25A;极数:4P;
  • 海格
  • 13%
  • 上海迈驰电气有限公司
  • 2025-07-26
查看价格

发动机

  • 品种:发动机,规格:MHD56160 D62B-5,说明:最大功率:635KW;气缸数:6;缸径行程:160/216mm,原厂质保,生产厂家
  • 潍柴股份
  • 13%
  • 潍坊奔马动力设备有限公司安徽办事处
  • 2025-07-26
查看价格

发动机

  • KXF-50KW
  • 康信
  • 13%
  • 福建博源大通机电设备有限公司
  • 2025-07-26
查看价格

发动机

  • KXF-30KW
  • 康信
  • 13%
  • 福建博源大通机电设备有限公司
  • 2025-07-26
查看价格

发动机

  • KXF-150KW
  • 康信
  • 13%
  • 福建博源大通机电设备有限公司
  • 2025-07-26
查看价格

圈闸电动机带摇控装置

  • 如带储电池再些单价上加500元
  • 清远市连山县2021年下半年信息价
  • 建筑工程
查看价格

圈闸电动机带摇控装置

  • 如带储电池再些单价上加500元
  • 清远市连山县2018年上半年信息价
  • 建筑工程
查看价格

圈闸电动机带摇控装置

  • 清远市连山县2016年上半年信息价
  • 建筑工程
查看价格

圈闸电动机带摇控装置

  • 清远市连山县2015年下半年信息价
  • 建筑工程
查看价格

门的电动机带摇控装置

  • 清远市连山县2011年上半年信息价
  • 建筑工程
查看价格

康明斯发动机

  • 30KW
  • 1
  • 0
  • 康明斯
  • 不含税费 | 不含运费
  • 2015-03-02
查看价格

发动机

  • YC6TH1320-D31
  • 1
  • 1
  • 玉柴
  • 中档
  • 含税费 | 含运费
  • 2022-11-04
查看价格

发动机模型

  • 手动拼装,可以通电使用
  • 1
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2022-02-23
查看价格

发动机模型

  • 手动拼装,可以通电使用
  • 1
  • 3
  • 中高档
  • 含税费 | 含运费
  • 2021-10-25
查看价格

发动机

  • 型号:CG132B-8,规格:600KW/400V/50Hz
  • 1
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2019-12-23
查看价格

一种发动机热测试液权利要求

1.《一种发动机热测试液》特征在于其组成成份及其重量百分比为:乙二醇70~80%、脂肪族一元羧酸1.0~5.0%、直链脂肪族二元羧酸1.0~5.0%、三嗪骨架三元羧酸0.1~1.0%、芳香酸0.1~4.5%、水解聚马来酸酐0.1~0.5%、烯基胺类0.2~4.0%、碳酸环己胺0.2~2.0%、复合缓蚀剂0.1~1.0%、消泡剂0.001~0.2%、去离子水余量。

2.按照权利要求1所述的发动机热测试液,其特征在于所述的脂肪族一元羧酸为己酸、庚酸、辛酸、异辛酸、壬酸、癸酸、新癸酸、十一烷酸和十二烷酸中的一种或两种混合物,优选为辛酸或异辛酸。

3.按照权利要求1所述的发动机热测试液,其特征在于所述的直链脂肪族二元羧酸为辛二酸、壬二酸、癸二酸、十一烷二酸和十二烷二酸中的一种或者两种混合物,优选为辛二酸或癸二酸。

4.按照权利要求1所述的发动机热测试液,其特征在于所述的三嗪骨架三元羧酸是三嗪环,三嗪环的1、3、5位上各有一个有机聚羧酸基,是由三聚氰胺和直链脂肪酸加成而得,其分子结构式为:

其中:聚合度n为5~8,尤以聚合度n是6时为首选。

5.按照权利要求1所述的发动机热测试液,其特征在于所述的芳香酸为苯甲酸、邻甲基苯甲酸、间甲基苯甲酸、对甲基苯甲酸、邻硝基苯甲酸、间硝基苯甲酸、对硝基苯甲酸、邻叔丁基苯甲酸、间叔丁基苯甲酸和对叔丁基苯甲酸中的一种或两种混合物,优选为苯甲酸或对硝基苯甲酸。

6.按照权利要求1所述的发动机热测试液,其特征在于所述的烯基胺类为三乙烯四胺、四乙烯五胺和五乙烯六胺中的一种或者三种的混合物。

7.按照权利要求1所述的发动机热测试液,其特征在于所述的复合缓蚀剂由甲基苯并三氮唑和2-巯基苯并噻唑组成,甲基苯并三氮唑和2-巯基苯并噻唑之间的重量比为1:4。

8.按照权利要求1所述的发动机热测试液,其特征在于所述的消泡剂是由3529B和1410组成,3529B和1410之间的重量比为2:1。

查看详情

一种发动机热测试液专利背景

汽车发动机在出厂之前需要经过一系列的测试,其中一项就是热测试。热测试过程是把发动机上线磨合一段时间,测试发动机运行的各项指标是否达到设计要求。发动机在热测试过程中使用到了冷却系统,而2010年1月前绝大多数发动机制造厂家在发动机的热测试过程中使用的是普通发动机冷却液。

在热测试过程中使用普通的发动机冷却液虽然也能对发动机的各种金属具有一定的保护作用,但是等到发动机热测试结束,需要将冷却系统中的发动机冷却液全部排出,由于无法完全排干发动机冷却系统中的冷却液,就会造成发动机冷却系统高湿热的环境,而系统本身会接触到空气,这使得发动机在开始储存的过程中就已经生锈腐蚀。

汽车发动机在经过热测试,储存到装车的过程中,实际经历了短期的热液相,短期的热气相,长期的冷气相生锈腐蚀过程。

中国汽车行业近年来发展迅速,已经研制了许多拥有自主知识产权的汽车发动机。中国国内发动机制造厂商在发动机热测试过程中一般使用的是普通发动机冷却液,由于普通发动机冷却液没有气相防锈能力,使得发动机等到装机的时候已经锈蚀严重。所以有的发动机制造厂商在发动机热测试完成以后就用防锈剂或者防锈油对发动机进行防锈保护,但是防锈剂或者防锈油使用麻烦,耗费大量人力、物力,并且在发动机装车前需要去除。如未把防锈剂或者防锈油去除干净,由于和发动机冷却液的兼容性问题,造成对发动机冷却液使用性能的损害,带来冷却系统后续一系列问题。鉴于以上种种问题,发动机制造厂家亟需一种具有综合防锈能力的试机冷却液。

截至2010年1月,中国国内市场上还没有专门用于发动机热测试过程用的发动机热测试液。进口产品例如德国巴斯夫公司的P113发动机测试保护液,是一种具有气相缓蚀能力的发动机热测试液,虽然此产品具有一定的气相防锈能力,但是对焊锡腐蚀严重,并且与普通发动机冷却液兼容性不好,相溶后出现凝胶、沉淀。

查看详情

一种发动机热测试液常见问题

查看详情

一种发动机热测试液发明内容

一种发动机热测试液专利目的

《一种发动机热测试液》的目的在于引入气相缓蚀剂技术(VCI),提供了一种发动机热测试液。

一种发动机热测试液技术方案

《一种发动机热测试液》组成组分及其重量百分比为:乙二醇70~80%、脂肪族一元羧酸1.0~5.0%、直链脂肪族二元羧酸1.0~5.0%、三嗪骨架三元羧酸0.1~1.0%、芳香酸0.1~4.5%、水解聚马来酸酐0.1~0.5%、烯基胺类0.2~4.0%、碳酸环己胺0.2~2.0%、复合缓蚀剂0.1~1.0%、消泡剂0.001~0.2%、去离子水余量。

所述的脂肪族一元羧酸是己酸、庚酸、辛酸、异辛酸、壬酸、癸酸、新癸酸、十一烷酸和十二烷酸中一种或者两种混合物;优选为辛酸或异辛酸。所述的直链脂肪族二元羧酸是辛二酸、壬二酸、癸二酸、十一烷二酸和十二烷二酸中一种或两种的混合物;优选为辛二酸或癸二酸。所述的三嗪骨架三元羧酸为三嗪环,三嗪环的1、3、5位上各有一个有机聚羧酸基,是由三聚氰胺和直链脂肪酸加成而得;其分子结构式为:

其中:聚合度n为5~8,尤以聚合度n是6时为首选。

所述的芳香酸是苯甲酸、邻甲基苯甲酸、间甲基苯甲酸、对甲基苯甲酸、邻硝基苯甲酸、间硝基苯甲酸、对硝基苯甲酸、邻叔丁基苯甲酸、间叔丁基苯甲酸和对叔丁基苯甲酸中的一种或两种的混合物,优选为苯甲酸或对硝基苯甲酸。

所述的烯基胺类是三乙烯四胺、四乙烯五胺和五乙烯六胺烯基胺类中一种或者三种的混合物。

所述的复合缓蚀剂由甲基苯并三氮唑和2-巯基苯并噻唑组成,甲基苯并三氮唑和2-巯基苯并噻唑的重量比为1:4。

所述的消泡剂由欧驰亚公司的3529B和道康宁公司的1410组成,3529B和1410的重量比为2:1。

《一种发动机热测试液》所述的脂肪族一元羧酸和直链脂肪族二元羧酸是根据有机羧酸中的一元羧酸防止金属点蚀,二元羧酸防止金属全面腐蚀原理进行复配。

《一种发动机热测试液》所述的三嗪骨架三元羧酸是根据有机酸型缓蚀剂的缓蚀机理为通过活性吸附在腐蚀活性点上,防止腐蚀进一步发生的原理出发,推断有机羧酸基团越多,分子越大,越容易形成吸附。结合一元羧酸和二元羧酸复配技术,能很好的解决金属的点蚀及全面腐蚀,尤其对焊锡和铸铝具有良好的保护作用。

《一种发动机热测试液》所述的水解马来酸酐具有良好的铝金属腐蚀抑制性能和良好的水质稳定性。

《一种发动机热测试液》所述的芳香酸对钢、铁具有良好的缓蚀作用,并对《一种发动机热测试液》的发动机热测试液具有良好的整体协同作用。

《一种发动机热测试液》所述的烯基胺类作为pH值调节剂和气相缓蚀协同剂。

《一种发动机热测试液》所述的复合缓蚀剂是根据甲基苯并三氮唑在溶液pH值小于8的时候对铜及其合金具有良好的缓蚀效果,2-巯基苯并噻唑在溶液pH值大于8的时候对铜及其合金具有良好的缓蚀效果而进行复配,尤以甲基苯并三氮唑和2-巯基苯并噻唑在重量百分数比例为1:4的时候,能取得对铜及其合金的最佳缓蚀效果。这种复配缓蚀剂能在铜及其合金的表面形成一层致密的膜,防止铜及其合金的腐蚀,特别是能极大的减少胺类物质对铜及其合金的络合作用。

《一种发动机热测试液》所述的消泡剂是根据欧驰亚公司的3529B具有良好的抑泡作用,道康宁公司的1410具有良好的消泡作用而进行复配,尤以二者重量百分数比为2:1时,对有机酸型腐蚀抑制剂具有良好的抑泡和消泡作用。

《一种发动机热测试液》的发动机热测试液是根据有机羧酸的复配原理,加入铜及其合金的特效缓蚀剂,加入具有协同效应的苯甲酸及其衍生物,拥有了全有机酸型发动机冷却液的优点,能够减少金属的腐蚀。引入独特的VCI技术,能够在常温下挥发出具有缓蚀作用的粒子,由于此技术的气相缓蚀剂粒子挥发性较高,只要它的蒸汽能够到达金属表面就能使金属得到保护,所以无论是金属的表面,还是内腔、沟槽甚至缝隙部位均可得到保护。

《一种发动机热测试液》发动机热测试液的制备方法:按照比例将乙二醇、去离子水投入反应釜中,在常温下搅拌10分钟,然后再按照比例将脂肪族一元羧酸、直链脂肪族二元羧酸、三嗪骨架三元羧酸、芳香酸、复合缓蚀剂、烯基胺类投入反应釜中,在常温下搅拌40分钟,加入水解聚马来酸酐、碳酸环己胺、消泡剂,搅拌直至完全溶解即可。

一种发动机热测试液改善效果

《一种发动机热测试液》的优点是,具有综合防锈能力,使汽车发动机在经过热测试,储存到装车的过程中不生锈,不腐蚀;《一种发动机热测试液》与普通发动机冷却液兼容性良好,无需完全排放干净即能装入发动机冷却液,节约大量时间和精力。

查看详情

一种发动机热测试液实施方式

实施例1~8 《一种发动机热测试液》发动机热测试液的制备。

按照表1中所示的比例将乙二醇、去离子水投入到反应釜中,在常温下搅拌10分钟,然后按照比例将脂肪族一元羧酸、直链脂肪族二元羧酸、三嗪骨架三元羧酸、芳香酸、复合缓蚀剂、烯基胺类投入反应釜中,在常温下搅拌40分钟,加入水解聚马来酸酐、碳酸环己胺、消泡剂,搅拌直至完全溶解即可。

表1、发动机热测试液的组分及其比例

组成成份及其含量 (% )

实施例 1

实施例 2

实施例 3

实施例 4

实施例 5

实施例 6

实施例 7

实施例 8

乙二醇

70

70

72

72

74

76

80

80

三嗪骨架三元羧酸

1

0.8

0.7

0.6

0.4

0.3

0.2

0.1

庚二酸

2

辛二酸

0.5

1

1.5

癸二酸

3

2

1

0.8

0.5

0.3

辛酸

0.3

0.6

0.9

1.5

2

异辛酸

0.2

0.5

0.8

1.5

苯甲酸

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

对硝基苯甲酸

1.5

1.2

1

1

0.8

0.6

0.4

0.2

复合缓蚀剂

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

三乙烯四胺

3

2

1

四乙烯五胺

1

1.5

1

0.8

2

2.2

2.5

五乙烯六胺

1.8

1.5

1.2

1.1

1

0.9

0.8

碳酸环己胺

2

1.8

1.4

1.2

1

0.8

0.6

0.4

水解聚马来酸酐

0.1

0.2

0.3

0.3

0.35

0.4

0.45

0.5

消泡剂

0.002

0.005

0.005

0.01

0.015

0.2

0.2

0.2

去离子水

余量

余量

余量

余量

余量

余量

余量

余量

实施例9 《一种发动机热测试液》发动机热测试液对多种金属腐蚀抑制保护性能试验

玻璃器皿腐蚀试验和模拟使用腐蚀试验是评价汽车发动机冷却液对多金属缓蚀能力好坏的试验方法,参照发动机冷却液的标准SH/T0085和SH/T0088对实施例4中制备的发动机热测试液进行检验,结果见表2

表2该发明发动机热测试液性能检验结果表

序列号

试验方法

标准要求

试验结果

1

玻璃器皿腐蚀 试片质量变化

毫克/ 片

SH/T 0085

紫铜 ±10

黄铜 ±10

碳钢 ±10

铸铁 ±10

焊锡 ±30

铸铝 ±30

-4

-4

0

1

3

2

2

模拟使用腐蚀, 试片质量变化

毫克/ 片

SH/T 0088

紫铜 ±20

黄铜 ±20

碳钢 ±20

铸铁 ±20

焊锡 ±60

铸铝 ±60

-9

-11

-3

2

-12

-11

从表2数据可以看出《一种发动机热测试液》发动机热测试液对焊锡、黄铜、紫铜、碳钢、铸铁、铸铝等多种金属具有优异的腐蚀抑制保护性能。

实施例10 《一种发动机热测试液》发动机热测试液腐蚀性能对比实验

将实施例4中制备的《一种发动机热测试液》的发动机热测试液与德国巴斯夫公司的P113发动机测试保护液参照SH/T0085标准进行对比玻璃器皿腐蚀试验,腐蚀对比实验结果见表3

表3、腐蚀性能对比试验结果

对比试验项目

标准要求

《一种发动机热测试液》发动机热测试液

BASF

P113

玻璃器皿腐蚀 试片质量变化 毫克/ 片

SH/T 0085

紫铜 ±10

黄铜 ±10

碳钢 ±10

铸铁 ±10

焊锡 ±30

铸铝 ±30

-4

-4

0

1

3

2

-4

-5

0

1

-139

3

实施例11 《一种发动机热测试液》发动机测试液综合防锈性能对比试验冷热交变气液相防锈试验方法:

1)取发动机所用材料(铸铁件)一块,做成试片,试片尺寸为(50毫米×25毫米×3毫米)。

2)取一个洁净的500毫升烧杯,加入试验液体250毫升。

3)将试片浸入烧杯试液中,将试液加热至88℃保持2小时,用不锈钢丝把试片悬挂于试液的上方,使试片一半浸入试液,一半悬于试液上方,停止加热,用玻璃板盖住部分杯口。

4)每天观察并记录试片的状态至有锈痕或锈斑出现。

将实施例4中制备的《一种发动机热测试液》的发动机热测试液与BASFP113、蓝星全有机型发动机冷却液、蓝星硅酸盐型发动机冷却液进行冷热交变气液相防锈试验对比,防锈时间越长,说明综合防锈能力越好。对比实验结果见表4。

表4、冷热交变气液相防锈对比试验结果

对比试验

产品

该发明发动机热测试液

BASF

P113

蓝星全有机型 发动机冷却液

蓝星硅酸盐型 发动机冷却液

防锈时间

( 天 )

180

62

1

1

从表2、表3、表4的数据可以看出,《一种发动机热测试液》配制的发动机热测试液不仅对发动机各金属具有优异的腐蚀抑制保护性能,更加具有综合防锈性能。尤其适合发动机出厂热测试使用。

查看详情

一种发动机热测试液荣誉表彰

2016年12月7日,《一种发动机热测试液》获得第十八届中国专利优秀奖。 2100433B

查看详情
一种发动机冷却水管总成 一种发动机冷却水管总成

一种发动机冷却水管总成

格式:pdf

大小:80KB

页数: 1页

由天津滨海中冠胶管有限公司申请的专利(公开号CN 103573381A,公开日期2014-02-12)"一种发动机冷却水管总成",提供了一种耐高温、弯曲性能好的发动机冷却水管总成,包括冷却水管、弹簧卡箍和扎带。冷却水管由内层橡胶管、纤维增强层和外层橡胶管组成。冷却水管的2个端口设有弹簧卡箍,中部设有扎带。该冷却水管采用橡胶材质,大大提高了弯曲性能;弹簧卡箍可使

一种发动机预热塞试验台的设计与应用 一种发动机预热塞试验台的设计与应用

一种发动机预热塞试验台的设计与应用

格式:pdf

大小:1.1MB

页数: 3页

文章介绍了一种发动机预热塞试验台的设计原理、设计方案以及应用效果等。经验证,试验台应用效果良好。

热声发动机简介

热声发动机是利用热声效应,实现热能到声能转化从而实现声功输出的声波发生器。系统中除振荡气体外,没有任何运动部件。根据声场特性不同,热声发动机主要分为驻波型、行波型及驻波行波混合型三种型式。由于驻波声场中速度波和压力波相位差为90°,驻波场中理论上没有功的输出;另一方面,在驻波热声发动机板叠中气体同固体间换热较差,气体进行的是介于等温和绝热的不可逆热力学循环,所以驻波热声发动机效率低。行波型热声发动机利用的是行波声场,声场中速度波动和压力波动相位相同,并且发动机回热器中气体通道的水力半径远小于气体热渗透深度,所以理论上气体在回热器中进行的是等温热传递,因此行波热声发动机在理论上可以达到比驻波热声发动机更高的热力学效率,从而有着光明的应用前景。

1979年Ceperley首先提出了行波型热声发动机的概念,他发现行波在通过回热器时经历了同理想斯特林循环类似的热力学过程,即压力与速度同相位。由于损失太大, Ceperley在实验中没有得到放大的声功,但他在行波热声发动机方面却做出了开创性贡献。日本的Yazaki做了环形管路行波热声发动机实验,在一定条件下得到放大的声功,从而证明在行波环路中可以实现自维持振荡,但是Yazaki的行波热声发动机效率很低。由于回热器中固体介质同气体介质之间相互热传递时总会不可避免地存在热滞后,理想情况下的行波斯特林热声发动机无法实现, Ceperley和Yazaki都提出,在行波声场中适当引入驻波成份会提高行波热声发动机的效率,但他们没能通过实验证实。美国Los Alamos国家实验室制作了一台行波型热声发动机,通过在行波环路引出一驻波直路,成功地在声场中引入了驻波成分,并在实验中取得42%的相对卡诺效率和30%的热力学效率,这一结果可以同内燃机(25%~ 40%)相媲美,目前他们正努力把这一成果应用于天然气液化 。

查看详情

测辐射热计构成

通常的测辐射热计是由惠斯通电桥构成,电桥的二个臂是二条相同的薄铂条。当某一铂条被很弱的(小于10-13焦耳)辐射所照射时,它的电阻会发生微小的变化,则可通过测量电阻的变化来估算辐射能。另一种测辐射热计是由一片粘在石英板上的半导体膜构成的光敏元件来代替桥臂上的铂条。此外,还有一种超导测辐射热计,它利用了某种薄膜(例如硝酸铌)在温度4K左右时,在电导率由正常态向超导态过渡的过渡点附近其电阻随温度急剧变化的性能。这种测辐射热计灵敏度很高,可用以精密测量很弱的辐射如红外辐射和激光的功率。

查看详情

热声发动机装置

自行设计建造的大型多功能行波驻波混合型热声发动机如图1所示。总体上看,该发动机由行波环路和驻波谐振直路两部分组成。环路是产生和放大声功的核心部件,其内运行的是行波成分。如果把行波环路看作是行波反馈回路,系统就可以认为是在驻波热声发动机谐振管速度波节(压力波腹)处引入行波反馈,这样做既利用了行波的压力、速度同相振动关系形成的具有高效率的斯特林循环,同时又利用驻波增大了板叠处的p/ vm值,从而大大提高整机热效率。因此这台发动机在工作循环中兼具了纯驻波发动机和纯行波发动机的优点。

从系统组成部件看,该发动机主要包括:主冷却器、热声回热器、加热器、热缓冲管、副冷却器、导流器、反馈管路、声容、喷射泵、谐振直管、消振锥管、消振直管等构件。下面逐一介绍:

热声发动机主冷却器

主冷却器位于回热器(2)的上方,其作用是在回热器室温端带走热量、冷却气体工质,以建立热声回热器上的温度梯度。主冷却器采用自行设计的壳管式结构和水冷方式,工质气体走管程,冷却水走壳路。其外观如图2所示。它通过把187根Υ 5× 1的不锈钢管焊接在两块平行不锈钢薄板上做成,管长37.5 mm,不锈钢薄板与该处的法兰氩孤焊接,水路通过法兰外缘各分三路引入引出。

热声发动机热声回热器

热声回热器是产生并强化热声效应的关键构件,此处发生的热声效应使声功产生或增强。热声回热器位于主冷却器(1)下方,总高75 mm,通过在一个壁厚为4 mm的不锈钢管内填充不锈钢丝网制成,其中丝网段的长度为70 mm,填有440片丝网,丝网片直径为90 mm,规格为120目。丝网圆片与不锈钢管壁应紧密配合,以防止沿回热器丝网片边缘的轴向串气,为做到这一点,制作时应使丝网与不锈钢管壁适当过盈配合。

热声发动机加热器

加热器的作用是在回热器相对冷却器的另一端提供一个高温热源,与冷却器处的环境温度一起在回热器上形成一个温度梯度。这个温度梯度是热声发动机工作的动力。在设计的发动机中,加热器和回热器一体加工,解决了二者之间的高温密封问题。同时,可以实现回热器和加热器之间的零距离接触,在保证气体流道畅通的条件下对热声转换有利。加热器的具体结构是把切好轴向气体通道的黄铜棒冷套到不锈钢圆管内,黄铜棒外径100 mm,垂直于气体轴向通道且在气体通道之间切出三条贯通不锈钢壁的槽,尺寸为96 mm× 12 mm,然后把切好加热管孔的不锈钢块插进槽内,外面用氩孤焊接密封。本加热器设计有24根特制电加热管,设计满负荷功率为5 000 W。图3是加热器的截面示意图,给出了电热管和气体通道在加热器中的相对位置。

热声发动机热缓冲管

热缓冲管位于加热器(3)与副冷却器(5)之间,作用是实现加热器与副冷却器的热隔离,以减少热端换热器向副冷却器的漏热。同时,使得声功从发动机高温区域向外传递。热缓冲管长240 mm,上半部分是80 mm长的直管,下半部分是锥管,直管处内径为90 mm,锥管最末端处内径为98 mm,半角锥度为1.35°。热缓冲管的内表面要进行磨光处理,以确保其粗糙度远小于粘性渗透深度和热渗透深度,减小边界层的扰动,抑制边界层效应所引起的Rayleigh流(一种由于边界层效应沿着热缓冲管壁面的时均质量流),锥度的作用也是为抑制管内Rayleigh流而设计。为了减少轴向导热,热缓冲管在满足强度要求的情况下,管壁应尽可能薄。

热声发动机副冷却器及导流器

副冷却器的作用是降低传输声功的气体温度,以利于声功引出并为热声制冷机提供动力。当环路中的直流流动(Gedeon流,即经过回热器、热缓冲管、反馈管路等沿环路的时均质量流)和热缓冲管中的直流流动均被完全抑制时,副冷却器的负荷仅仅是沿热缓冲管管壁的漏热和来自热端换热器的热辐射,所以副冷却器可以采用直径较大、长度较短(即换热面积较小)的不锈钢管。该热声发动机中副冷却器采用与主冷却器类似结构,细不锈钢管的长度缩短为25 mm。导流器位于热缓冲管下方,由若干片22目不锈钢丝网构成。导流器的作用是使进入热缓冲管底部和热缓冲管内的气流均匀分布,防止由于副冷却器的形状或与谐振管连接点处气流的分离而形成的射流。射流会导致热缓冲管内气体的直流流动,造成加热器大量热量浪费。

热声发动机反馈管路

反馈管路的作用是为行波成分提供通路,同时起到一个声感部件的作用,使冷却器处产生行波相位。副冷却器与反馈回路及谐振管的连接通过一个倒T形三通管实现。反馈管路自下而上由四部分组成:反馈弯管、锥管1、直管、锥管2。反馈弯管是一个90°弯头,与之相接的锥管1长为100 mm,内径从90 mm缩变到76 mm。据估算,由于环路中加热段的高温作用,环路右侧会产生1 mm~ 3 mm形变。为了消除由此产生的热应力,本系统采用自行制作的特殊结构以确保行波环路不被破坏。锥管2主要用来实现不同截面积管道之间的过渡。

热声发动机声容管路

声容横跨环路左右支路,是一个容积较大的腔体。它本质上是一个声容部件,同反馈直路一起在冷却器端实现行波相位。声容管路由两个90°不锈钢弯头氩孤焊接完成,内径100 mm,壁厚4 mm。

热声发动机喷射泵

喷射泵位于声容(7)和主冷却器(1)之间,其作用是利用流道不对称效应在两端产生一个压力差,形成一个逆着环路二阶质量流的流动并尽可能与之抵消,从而抑制环路Gedeon直流。如图4所示,喷射泵在设计中采用双平行锥形槽结构,槽高35 mm,长50 mm,槽的出口和入口都用圆角过渡,为加工方便和降低成本喷射泵用铝制作。为实现上下端面压差连续调节,喷射泵最好能设计成槽截面积可调的形式。

热声发动机谐振直路

谐振直路的作用是在行波环路上耦合一个驻波管路,把驻波成分引入系统中,使该系统兼有驻波和行波热声发动机的优点,从而提高热声发动机的热力学效率;另一方面,谐振直路从环路引出大部分声功并在直路上形成驻波相位,由于驻波系统可以实现较大的声阻抗,所以谐振直路提供了连接负载的最佳位置。谐振直路主要由三部分组成:接口锥管、共振直管、消声部分。接口锥管是一个渐扩管,内径从90 mm增加到100 mm,长度为100 mm。共振直管内径100 mm,长度1 900 mm,这是驻波部分的主要部件。消声部分包括长锥管、直管、封头,锥管长度1 300 mm,其内径从100 mm增加到261 mm,与之相连的消振直管长440 mm。消声部分的作用是提供一个声阻抗连续变化的无限大空间,实现1/4波长驻波谐振。在试验中也充分证实了这一点,消声锥管的入口处压比很小,只有1.02左右,可以近似看作是压力波节。

查看详情

相关推荐

立即注册
免费服务热线: 400-823-1298