选择特殊符号
选择搜索类型
请输入搜索
地震中液化引发场地侧扩流是导致桩基震害的主要原因之一。振动台试验是研究液化侧扩流场地桩-土动力相互作用最有效的途径之一。数值计算是振动台试验的有力补充,同时也是将理论研究工作拓展到实际工程的必要技术环节。鉴于此,本项目针对地震下液化侧扩流场地桩-土相互作用体系,通过大型桩基振动台试验和理论分析相结合的方法,建立了液化侧扩流场地桩-土动力相互作用有限元数值计算模型和简化分析方法。同时,基于典型液化侧扩流场地桩-土-上部结构体系分析模型,获取了桩-土相互作用荷载传递规律。最后,基于现有设计方法,提出了液化侧扩流场地桩基抗震设计方法,并验证了设计方法的有效性。具体研究内容、方法及成果如下: (1) 液化侧扩流场地桩基振动台模型试验。针对典型近岸液化侧扩流场地特点,借鉴同类振动台试验设计经验,完成了液化侧扩流场地桩基振动台试验,并对液化侧扩流场地土层孔压、加速度和侧向位移及桩的侧向位移和弯矩响应进行系统分析。 (2) 液化侧扩流场地桩基振动台模型试验有限元数值模拟。针对桩基振动台试验,利用初始状态分析法,通过施加节点孔压和相应节点荷载模拟自由水体,建立了液化侧扩流场地桩基振动台数值模型,并基于振动台试验结果对数值模型的可靠性进行验证。 (3) 液化侧扩流场地桩-土相互作用简化分析方法。针对桩基振动台试验,基于非线性Winkler地基梁模型,建立了液化侧扩流场地桩-土相互作用简化分析方法,基于试验结果对简化分析方法的可靠性进行验证并进行了参数分析。 (4) 液化侧扩流场地桩-土相互作用荷载传递模型。建立了典型的液化侧扩流场地桩基地震响应荷载传递模型,分析了桩土荷载传递规律。 (5) 液化侧扩流场地桩基抗震设计方法。提出基于位移的文克尔地基梁等效静力设计方法,给出了该方法的一般步骤,并依据动力非线性有限元分析对该设计方法进行了验证,最后给出了该方法进行液化侧扩流场地桩基设计的使用实例。 2100433B
基于我国液化侧扩流场地桩基桥梁抗震设计的应用需求,密切此项研究的国际前沿技术与最新进展,直接针对桩基简支桥梁结构与液化侧扩流场地条件,并以延性抗震能力研究较充分的钢筋混凝土桩基-柱式桥墩为研究对象,采用试验方法、理论分析、数值模拟与震害调查相结合的研究手段,立足于场地液化侧扩流造成桥梁桩基破坏的震害事实,着眼于从分析桩-土-桥梁结构强震相互作用入手,注重于研究桩基强震反应的基本规律、桩-土强震相互作用的物理过程与力学机制、桩-土运动相互作用与惯性相互作用对桩基抗震性能的重要影响,致力于提出便于推广、易于数值实现的液化侧扩流场地桥梁桩基强震反应与稳定性分析方法,初步建立液化侧扩流场地桥梁桩基抗震设计的简化分析方法(对我国现行规范中液化侧扩流场地桥梁桩基抗震设计方法提出初步的改进建议)。有利于进一步提高我国桥梁工程抗震基础研究的创新能力,并逐步实现对桥梁工程震害与抗震研究的重点跨越与理论升华。
钻孔桩,挖孔桩,这两种是最常见的两种,钻孔桩分地质不一样,有用冲击钻的,有用正循环。反循环的
1、低应变动测法 本方法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置,并为其它方法的进一步检测提供依据 2、声波透射法 为了对混凝土灌注桩完整性进行检测,判定桩身缺陷的程度并确定其位置...
当然影响桥梁稳定性,有时候施工单位施工完桩基,桩基偏位超过施工规范允许值,此时桥梁跨径发生变化,还按照原设计的桥梁施工,肯定影响桥梁稳定性。
某工程场地堤岸的抗震稳定性分析
利用有限元模型对两种支护方案下某工程场地堤岸的抗震性能进行了分析。二维有限元模型分析表明,采用双排桩支护方案能明显减小岸边土体的震陷和滑移,并且减小了支护桩的内力反应,达到了"小震不坏,中震可修"的设防目标。三维模型分析表明,第二排桩的桩距为1.5m时场地的抗震稳定性明显好于3.0m的情况。第二排支护桩与堤岸墙之间的土体仍会产生震陷,堤岸挡墙随之向晋江方向滑移,但由于两排支护桩形成的围护屏障使建筑周围土体保持稳定,保证了高层建筑的结构稳定。
桥梁桩基荷载下溶洞顶板稳定性研究_汪华斌
桥梁桩基荷载下溶洞顶板稳定性研究_汪华斌
液化侧扩地基上桩基有哪些震害?
液化且有侧向扩展的情况,不仅导致液化层范围基桩承载力削弱,基桩还要承受侧扩液化层的侧向推力和水平地震作用,因而液化侧扩地段桩基的震害程度要重于液化而无侧扩的地段。鉴于桩基所受水平推力十分突出,因而桩顶与承台连接处、液化土与非液化土界面,桩的剪力、弯矩高度集中,破坏更严重,其特征表现为桩顶与承台或者桩身上下彻底断裂,并且产生明显错位;此外位于岸边坡地的桩基发生整体失稳的可能性更大。
土体液化导致的桩基桥梁地震震害非常常见。我国地震多发,而桥梁众多的沿海地区地震烈度高,又存在大量可液化地带,砂土液化对桥梁抗震安全性的影响不容忽视。国内外对液化场地中桩-土相互作用已经进行了大量的研究,但对于桥梁的抗震设计,研究成果还远远不够。本项目的目标是考虑液化产生的地面大变形影响,揭示液化场地桩基桥梁的地震破坏机理,并建立抗震设计方法。主要研究内容有:1) 考虑液化大变形,分析液化对桩基、桥梁上部结构地震反应的影响,总结液化场地桩基桥梁的地震反应特性; 2)考虑液化大变形,进行液化场地桩基桥梁单墩模型振动台试验,研究桩基地震破坏机理并验证理论计算模型;3)解决液化场地桩土惯性相互作用和几何相互作用的简化计算及组合方法,建立液化场地桩基桥梁地震反应的简化分析方法;4)进行液化场地桩基桥墩系统Pushover分析,研究地震破坏机理以及地震变形能力,提出液化场地桩基桥梁的抗震验算指标。
近数十年来,由于地震引发的砂土液化所导致的桥梁结构损毁的震害在全球范围内屡有报道,而我国桥梁众多,且多数处于地震烈度较高的沿江沿海地区,存在大量可液化地带,故而砂土液化对桥梁抗震安全性的影响不容忽视。国内外学者已经对液化场地中土体液化机理和桩-土相互作用进行了大量的研究,但对于桥梁结构的抗震设计,研究成果还远远不够。本项目的目标是考虑液化产生的地面大变形影响,揭示液化场地桩基桥梁的地震破坏机理,并建立抗震设计方法。围绕这样的研究目标,课题组采用理论分析结合试验研究的方法开展了如下研究:首先,提出了可考虑液化土层局部剪切变形特性的二维场地、三维结构的多尺度有限元模型,并采用国外离心机试验验证了数值模型。在此基础上,进行了液化场地桩基桥梁地震反应的参数敏感性分析。根据分析结果,选取高敏感性参数,进行了振动台试验的设计,通过试验结果,揭示了液化场地桩基桥梁的地震破坏机理。而后,建立了能够代表液化场地-桩基桥梁结构的单墩简化模型,并进行大量的数值参数分析,总结地震反应规律,并提出了简化的抗震设计方法。最后,依托实际工程,建立了场地-全桥的有限元模型,研究了桥梁结构各部件在液化场地的地震反应特性,数值结果与实际震害相吻合。本项目的研究成果可为我国桥梁抗震设计规范的改进提供有力的支持。 2100433B