选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 市政百科

凸面镜成像

凸面镜成像,属于光学规律。平行光线投射到凸面镜上,反射的光线将成为散开光线,如果顺着反射光线的相反方向延伸到凸面镜镜面的后面,可会聚并相交于一点,这一点就是凸面镜的主焦点(F),属虚性焦点。

成正立,缩小,虚像。

凸面镜成像与凹透镜的区别

凹透镜

两侧面均为球面或一侧是球面另一侧是平面的透明体,中间部分较薄,称为凹透镜。分为双凹、平凹及凸凹透镜三种。其两面曲率中心之连线称为主轴,其中央之点O称为光心。通过光心的光线,无论来自何方均不折射。平行主轴的光束,照于凹透镜上折射后向四方发散,逆其发散方向的延长线,则均会于与光源同侧之一点F,其折射光线恰如从F点发出,此点称为虚焦点。在透镜两侧各有一个。凹透镜又称为发散透镜。凹透镜的焦距,是指由焦点到透镜中心的距离。透镜的球面曲率半径越大其焦距越长,如为薄透镜,则其两侧之焦距相等。

对于薄凹透镜:

当物体为实物时,成正立、缩小的虚像,像和物在透镜的同侧;

当物体为虚物,凹透镜到虚物的距离为一倍焦距(指绝对值)以内时,成正立、放大的实像,像与物在透镜的同侧;

当物体为虚物,凹透镜到虚物的距离为一倍焦距(指绝对值)时,成像于无穷远;

当物体为虚物,凹透镜到虚物的距离为一倍焦距以外两倍焦距以内(均指绝对值)时,成倒立、放大的虚像,像与物在透镜的异侧;

当物体为虚物,凹透镜到虚物的距离为两倍焦距(指绝对值)时,成与物体同样大小的虚像,像与物在透镜的异侧;

当物体为虚物,凹透镜到虚物的距离为两倍焦距以外(指绝对值)时,成倒立、缩小的虚像,像与物在透镜的异侧。

如果是厚的弯月形凹透镜,情况会更复杂。当厚度足够大时相当于伽利略望远镜,厚度更大时还会相当于正透镜。

结构不同

凸透镜是由两面磨成球面的透明镜体组成

凹面镜是由一面是凹面而另一面不透明的镜体组成

对光线的作用不同

凸透镜主要对光线起折射作用

凹面镜主要对光线起反射作用

成像性质不同

凸透镜是折射成像 成的像可以是 正、倒;虚、实;放、缩。起聚光作用

凹面镜是反射成像 可以是实像或虚像,可以是放大、等大、缩小的像。

起散光作用透镜(包括凸透镜)是使光线透过,使用光线折后成像的仪器,光线遵守折射定律。

面镜(包括凸面镜)不是使光线透过,而是反射回去成像的仪器,光线遵守反射定律。

凸透镜可以成倒立放大、等大、缩小的实像或正立放大的虚像。也可把平行光会聚,可把焦点发出的光线折射成平行光。凸面镜只能成正立缩小的虚像,主要用扩大视野。

查看详情

凸面镜成像造价信息

  • 市场价
  • 信息价
  • 询价

凸面镜

  • 凸面镜 真空镀膜 直径800mm 挂式
  • 13%
  • 成都路安达交通设施经营部
  • 2025-07-22
查看价格

凸面镜

  • 凸面镜 真空镀膜 直径800mm 挂式
  • 13%
  • 成都金牛区川宏建材商店
  • 2025-07-22
查看价格

凸面镜

  • 品种:室外凸面镜;外形尺寸(mm):Ф800;产品描述:树脂
  • 晶科缘
  • 13%
  • 贵州晶科科技服务有限公司
  • 2025-07-22
查看价格

凸面镜

  • 品种:室外凸面镜;外形尺寸(mm):Ф800;说明:树脂
  • 晶科缘
  • 13%
  • 贵州晶科科技服务有限公司
  • 2025-07-22
查看价格

凸面镜

  • Ф1000
  • 13%
  • 贵州凌云鹏交通设施有限公司
  • 2025-07-22
查看价格

玻璃砖(凸面)

  • 310×322-25×50
  • 中山市2012年11月信息价
  • 建筑工程
查看价格

玻璃砖(凸面)

  • 310×322-25×50
  • 中山市2012年9月信息价
  • 建筑工程
查看价格

玻璃砖(凸面)

  • 310×322-25×50
  • 中山市2012年2月信息价
  • 建筑工程
查看价格

玻璃砖(凸面)

  • 310×322-25×50
  • 中山市2011年9月信息价
  • 建筑工程
查看价格

玻璃砖(凸面)

  • 310×322-25×50
  • 中山市2010年10月信息价
  • 建筑工程
查看价格

凸面镜

  • 凸面镜
  • 1
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2023-08-09
查看价格

凸面镜

  • 交通凸面镜
  • 6
  • 1
  • Φ600
  • 中档
  • 含税费 | 含运费
  • 2015-05-07
查看价格

凸面镜

  • 交通凸面镜
  • 8
  • 1
  • 不含税费 | 不含运费
  • 2009-11-13
查看价格

凸面镜

  • Ф1200,凸面镜采用室外型,应具备防撞功能;仅凸面镜,不含杆
  • 137
  • 3
  • 中高档
  • 不含税费 | 含运费
  • 2020-07-28
查看价格

凸面镜

  • 直径1000mmPC材质凸面镜
  • 1
  • 3
  • 中档
  • 含税费 | 含运费
  • 2023-03-03
查看价格

凸面镜成像实像虚像

在光学中,由实际光线汇聚成的像,称为实像,能用光屏承接;反之,则称为虚像,只能由眼睛感觉。有经验的物理老师,在讲述实像和虚像的区别时,往往会提到这样一种区分方法:"实像都是倒立的,而虚像都是正立的。"所谓"正立"和"倒立",当然是相对于原物体而言。

平面镜、凸面镜和凹透镜所成的三种虚像,都是正立的;而凹面镜和凸透镜所成的实像,以及小孔成像中所成的实像,无一例外都是倒立的。当然,凹面镜和凸透镜也可以成虚像,而它们所成的两种虚像,同样是正立的状态。

那么人类的眼睛所成的像,是实像还是虚像呢?我们知道,人眼的结构相当于一个凸透镜,那么外界物体在视网膜上所成的像,一定是实像。根据上面的经验规律,视网膜上的物像似乎应该是倒立的。可是我们平常看见的任何物体,明明是正立的啊?这个与"经验规律"发生冲突的问题,实际上涉及到大脑皮层的调整作用以及生活经验的影响。

当物体与凸透镜的距离大于透镜的一倍焦距小于二倍焦距时,物体成倒立的像,当物体从较远处向透镜靠近时,像逐渐变大,像到透镜的距离也逐渐变大;当物体与透镜的距离小于焦距时,物体成放大的像,是虚像。

当物体与凸透镜的距离大于二倍焦距时,物体成倒立的像,这个像是蜡烛射向凸透镜的光经过凸透镜会聚而成的,是实际光线的会聚点,能用光屏承接,是实像。当物体与透镜的距离小于焦距时,物体成正立的虚像。

查看详情

凸面镜成像几何作图

凸面镜成像的几何作图原则与凹面镜相同,也就是:

从物体的某一点(A)作一与主光轴平行的直线为入射光线,入射光线到达球面镜镜面时,发生反射,反射后的方向相反的直线为反射光线,此反射光线必然通过主焦点(F)。 ·从物体的同一点(A)通过镜面的曲率中心(C)的连线为副轴,此副轴与上述通过主焦点的反射光线发生相交的点(A′),即为该物体成像之处,

查看详情

凸面镜成像常见问题

查看详情

凸面镜成像透镜成像规律

规律口诀

一倍焦点分虚实,二倍焦点分大小,二倍焦点物像等。

实像总是异侧倒。物近像远像变大,物远像近像变小。

虚像总是同侧正。物远像远像变大,物近像近像变小。

像的大小像距定,像儿追着物体跑,物距像距和在变。

一倍焦距分虚实,

两倍焦距分大小。

物近像远像变大,

物远像近像变小。

注:这里所指的一倍焦距是说平行光源通过透镜汇聚到主光轴的那一点到透镜光心的距离,也可直接称为焦距;两倍焦距就是指该距离的两倍

凸透镜成像的两个分界点:

2f点是成放大、缩小实像的分界点;f点是成实像、虚像的分界点。

薄透镜成像满足透镜成像公式:

1/u(物距)+1/v(像距)=1/f(透镜焦距)

注:透镜成像公式是针对薄透镜而言,所谓薄透镜是指透镜厚度在计算物距、像距等时,可以忽略不计的透镜。当透镜很厚时,必须考虑透镜厚度对成像的影响。

透镜分为凸透镜和凹透镜。凸透镜成像规律就是:物体放在焦点之外,在凸透镜另一侧成倒立的实像,实像有缩小、等大、放大三种。物距越小,像距越大,实像越大。物体放在焦点之内,在凸透镜同一侧成正立放大的虚像。物距越大,像距越大,虚像越大。凹透镜对光线起发散作用, 它的成像规律则要复杂得多。

查看详情
玻璃平面镜成像的个数和像距分析 玻璃平面镜成像的个数和像距分析

玻璃平面镜成像的个数和像距分析

格式:pdf

大小:71KB

页数: 未知

我们可以把表面光洁平滑的反射面都叫做平面镜。但实际上人们选用的平面镜只是那些反射能力较强的反射面,如古代的铜镜、现代的玻璃平面镜、抛光

电阻抗成像成像原理

电阻抗成像注入电流电阻抗成像(ACEIT)

注入电流电阻抗成像(ACEIT)是最早提出的且研究历史最长的成像方法。许多早期的文献将之称为电阻抗成像(EIT),后来随着各种成像方法的提出,有些学者为了将它与其他激励方式的电阻抗成像区分开来,故将之命名为注入电流电阻抗成像(ACEIT)。后来EIT概念的外延增大,表示所有的电阻抗成像。相对于其他方式的电阻抗成像而言,ACEIT起步较早,研究得比较充分。

ACEIT的原理是,根据人体内不同组织在不同生理、病理状态下具有不同的电阻抗,通过电极给人体施加小的安全驱动电流/电压,在体外测量电压/电流信号,并依据相应的快速重组算法重建人体内部的电阻抗分布或其变化的图像。

不同的电流注入模式使成像区域内部形成的电流分布不同,测量灵敏度不同,采集信号的信噪比不相同,最终成像质量也不同。常见的注入电流模式主要包括:临近驱动模式(adjacent driven pattern)、交叉注入模式(cross method)、相反注入电流模式(opposite method)和自适应注入电流模式(adaptive method)等。

电阻抗成像感应电流电阻抗成像(ICEIT)

感应电流电阻抗成像的原理是,它在被测目标的外围放置若干个激励线圈,对其施加交变电流,在空间产生交变磁场,从而在被测目标内激励出感应电流。测量被测目标表面电极间的电压差,并用此数据重构电导率扰动的分布,从而进行目标区域电导率的动态成像。

电阻抗成像磁共振电阻抗成像(MREIT)

针对常规电阻抗成像方法只能测量成像目标区域外周边信息的问题,加拿大多伦多大学的Zhang于1992在其题为“Electrical impedance tomography based on current density”的硕士论文中提出将EIT与磁共振电流密度成像(magnetic resonance current density image, MRCDI)结合的磁共振电阻抗成像方法。

磁共振电阻抗成像技术(MREIT)就是一种把磁共振成像技术(MRI)和EIT技术结合起来的新型阻抗成像技术。MREIT技术发展的基础在于磁共振能够检测注入电流激励磁场沿磁共振主磁场方向的分量。利用这一原理,就能够测量得到注入电流在成像目标内部激励的磁场分布,进而,由安培定律(Ampere’s Law)即 可以计算得到注入电流在成像目标内的电流密度分布,再结合成像目标边界电压分布,利用特定算法就能够重建成像目标体的阻抗分布,这就是MREIT技术的基本思想。

2005年,Ozparlak等提出感应电流磁共振电阻抗成像方法(induced current magnetic resonance-electrical impedance tomography, IC-MREIT),将非接触概念引入磁共振电阻抗成像方法。采用外部非接触线圈代替电极,将被测物放置于设计的几何中心位置,线圈通电后被测物处于交流一次磁场中,该一次磁场在被测物内部感应生成涡流产生二次磁场。二次磁场可由MRI设备测得,其中包含足够的信息用来重建图像。

电阻抗成像磁感应成像方法(MIT)

ICEIT采用电极测量成像目标体表面电压,依然存在因贴放大量电极而浪费时间和处理极不方便等困难。为此,Korjenevsky等人提出激励和测量全部采用线圈的非接触方式,通过测得的表面磁场重建电导率分布的磁感应成像方法(MIT)。应用于医学领域的磁感应成像方法的研究始于1993年,英国Swansea大学的Al-Zeibak等首次报道了用于医学的MIT实验系统,能够通过重构图像区分出脂肪与脱脂组织的轮廓和几何尺寸。

MIT的基本原理是,激励线圈产生频率的交变磁通密度,将成像目标体置于激励磁场中,成像目标区域内产生涡旋电场,由于区域内部包含导电介质,因此产生涡旋感应电流,该涡流同时会产生二次感应磁通密度并能改变原激励磁通密度的强弱和空间分布,在接收线圈上可以检测到相应的感应电压。通过检测到的测量线圈的感应电压的变化可以间接地反映导体的电导率分布,进行图像重构。由理论分析可知,二次感应磁通密度的实部由位移电流引起,与导体的介电常数有关,虚部由涡旋电流感生,与导体的电导率近似成线性关系。

电阻抗成像电磁阻抗成像(EMIT)

Levy等人提出了一种成像技术叫电磁阻抗成像(EMIT),既测量EIT的边界电压,又通过线圈记录外部磁场。他们通过数值模拟得出结论,附加的一小部分磁场的测量可以减小EIT问题的条件数,即改善了问题的病态性。

电阻抗成像电场电阻率成像(EFT)

还有另外一种完全非接触电阻抗成像方法——电场电阻率成像(EFT)[90]。这种成像方法采用与成像体非接触的电极激励交变电场,激励电极在成像目标体近表面产生感应电荷,而在远离电极的一面产生相反电荷,使得测量电压和激励电压之间的相移携带有成像目标体电阻率特性信息,进而可以建立相移与电阻率的对应关系,据此重构出成像体电阻率分布图像。

电阻抗成像磁探测电阻抗成像(MDEIT)

磁探测电阻抗成像(MDEIT)通过贴在成像目标体的成对电极,向成像目标体注入一定频率的交变电流,然后用某种形式的接收装置,例如感应线圈、超导量子干涉仪(SQUID)等,测量注入电流在成像目标体外产生的磁场,根据表面磁场的反问题求解获得产生磁场的电流分布,进而从电流分布重构出电导率分布图像。

综上所述,电阻抗成像(EIT)主要包括注入电流电阻抗成像方法(ACEIT),感应电流电阻抗成像方法(ICEIT),磁共振电阻抗成像方法(MREIT)和电磁阻抗成像(EMIT),磁感应成像方法(MIT),电场电阻率成像方法(EFT)和磁探测电阻抗成像(MDEIT)。它们的激励方式和传感接收方式各不相同,见表1。

表1 EIT各种方法的激励和传感方式的比较

方法

激励方式

传感接收方式

ACEIT

电极

电极

ICEIT

线圈

电极

MREIT

电极

MRI( 电极)

IC-MREIT

线圈

MRI

MIT

线圈

线圈

EMIT

电极

线圈 电极

EFT

非接触电极

非接触电极

MDEIT

电极

SQUID或线圈

查看详情

凸透镜的成像规律成像规律

凸透镜可以成倒立放大、等大、缩小的实像或正立放大的虚像。可把平行光会聚于焦点,也可把焦点发出的光线折射成平行光。凸面镜主要用扩大视野。凸透镜的成像规律 物距(u)像距(v)倒立、正立放大、缩小虚像、实像 应用特点:

1.u>2f f<v<2f 倒立、缩小、实像 照相机

2.u=2v=2f倒立、等大、实像 测焦距大小分界点f<u<2 fv>2 f倒立、放大、实像 投影仪 幻灯机 u=f//// 探照灯获得平行光源虚实分界点 倒、正分界点

3.u<fv>u与物同侧 正立、放大、虚像 放大镜虚像在物体同侧 物像同侧 (1)二倍焦距以外,倒立缩小实像;〈这里所指的一倍焦距是说平行光源通过透镜汇聚的那一点到透镜光心的距离,那么两倍焦距就是指2倍远的地方〉

二倍焦距,倒立等大实像;

一倍焦距到二倍焦距,倒立放大实像;

一倍焦距不成像;一倍焦距以内,正立放大虚像;

成实像物和像在凸透镜异侧,成虚像在凸透镜同侧。

(2)

一倍焦距分虚实

两倍焦距分大小

物近像远像变大

物远像近像变小

凸透镜成像规律表格

物体到透镜中心的距离u 像的正倒像的大小像的虚实 像到透镜中心的距离v 应用实例物距和像距的关系

(u是物距 v是像距 f是焦距)

u>2f 倒立 缩小的 实像 2f>v>f 照相机 u>v

u=2f 倒立 等大的 实像 v=2f可用来测量凸透镜焦距 u=v

2f>u>f 倒立 放大的 实像 v>2f 放映机,幻灯机,投影机u<v

u=f 不成像 平行光源: 探照灯 \

u<f 正立 放大的 虚像 v>u 虚像在物体同侧 放大镜\

为了研究各种猜想,人们经常用光具座进行试验。

蜡烛的焰心,凸透镜中心,光屏中心应尽量保持在同一水平高度上。

(3)凸透镜成像还满足1/v+1/u=1/f

利用透镜的特殊光线作透镜成像光路:

(1)物体处于2倍焦距以外

(2)物体处于2倍焦距和1倍焦距之间

(3)物体处于焦点以内

(4)凸透镜成像光路 实验研究凸透镜的成像规律是:当物距在一倍焦距以内时,得到正立、放大的虚像;在一倍焦距到二倍焦距之间时得到倒立、放大的实像;在二倍焦距以外时,得到倒立、缩小的实像。

该实验就是为了研究证实这个规律。实验中,有下面这个表:

物 距 u 像的性质 像的位置

正立或倒立 放大或缩小虚像或实像 与物同侧与异侧像距v

u>2f 倒立缩小 实像异侧 f<v<2f

u=2f 倒立等大 实像异侧 v=2f 此时物体与像的距离是最小的,即4倍焦距。

f<u<2f 倒立放大 实像异侧v>2f

u=f 不成像 v无限大(平行光源,如:探照灯)

u<f 正立 放大 虚像 同侧 u,v同侧

这就是为了证实那个规律而设计的表格。其实,透镜成像满足透镜成像公式:

1/u(物距)+1/v(像距)=1/f(透镜焦距)

照相机运用的就是凸透镜的成像规律

镜头就是一个凸透镜,要照的景物就是物体,胶片就是屏幕

照射在物体上的光经过漫反射通过凸透镜将物体的像成在最后的胶片上

胶片上涂有一层对光敏感的物质,它在曝光后发生化学变化,物体的像就被记录在胶卷上

至于物距、像距的关系与凸透镜的成像规律完全一样

物体靠近时,像越来越远,越来越大,最后再同侧成虚像。

物距增大,像距减小,像变小;物距减小,像距增大,像变大。

一倍焦距分虚实,二倍焦距分大小。

凸透镜成像规律表:实像,物近像远像变大;虚像,物远像远像变大

(4)当成虚像时,物、像的左右一致,上下一致;当成实像时,物、像的左右相反,上下相反.。

(5)凸透镜成像的两个分界点:2f点是成效放大缩小实像的分界点;f点是成实像虚像的分界点。

查看详情

雾幕成像系统成像描述

空气雾幕投影成像是一种全新的空气成像设备。该设备是利用海市蜃楼的成像原理借助空气中存在的微粒将光影图像呈现。使用一层很薄的水雾墙代替传统的投影幕,使您能在该屏幕影像中随意穿梭,达到真人可进入视频画面的虚幻效果。使用雾化设备产生大量人工雾,结合空气流动学原理而制造出来的能产生形成平面雾气的屏幕,再将投影设备投射在该屏幕上,便可以在空间中形成虚幻立体的影像,形成一种三位空间立体图像,给人一种新的立体视觉享受,其影象给人的感受如同人行画中,画在人中,亦真亦幻,如置身仙境身处瑶池般。忽隐忽现,神秘诱人的特性开发一些令人称奇的展示项目。在迷茫的雾屏上,放映如幻似真的神话故事。将带给观众前所未有的视听体验。

查看详情

相关推荐

立即注册
免费服务热线: 400-823-1298