选择特殊符号
选择搜索类型
请输入搜索
高岭石属1:1型二八面体层状硅酸盐,晶层问通过范德华力和氢键联结,晶层间联结紧密,无层间物质,晶层间距小,这类粘土矿物水化膨胀能力差。伊利石组粘土矿物的基本结构单元由两个硅氧四面体层与夹在它们之间的八面体组成。同晶置换主要发生在四面体中,由此产生的负电荷被层间K 平衡。层间K 对晶层起固着作用,与溶液中阳离子交换很难,只有外表棱角上的K 易同其他阳离子交换,但交换能力低,遇水后晶层间膨胀小。绿泥石在结构上与2:1型层状粘土相似,不同的是层间阳离子被一层八面体氢氧化物片替代,并且这个八面体片的正电荷与晶层负电荷相平衡,在2:1型晶层与氢氧化物片之间除静电引力外,还有氢氧键联结,晶层间结合紧密,遇水后水化膨胀能力弱。
蒙脱石的基本结构单元与伊利石相似,属2:1型,其差异在于蒙脱石层间电荷比伊利石少,层间阳离子不是K ,而是Ca ,Mg2 、Na 等交换性阳离子。交换性阳离子与晶层通过静电引力联结,联结弱,易被置换,水和其他极性分子能够渗入结构单位层之间,并引起晶格沿纵轴方向膨胀。特别是Na 为其主要吸附的阳离子时,吸水后有较高的水化膨胀性能,其晶层轴间距可达40A。。
胶体质点的性质相似,粘土矿物的颗粒表面也是带电的,其带电原因为:
(1)因粘土矿物颗粒表面有未中和的酸基或碱基而带电,其所荷电性,视酸基或碱基而定;
(2)因结构单位层中的高价离子被低价离子类质同象代替而带电,其电性为负;
(3)因结构单位层边缘上出现的破键而带电,其电性视介质的pH值而定。
由于粘土矿物颗粒表面的这种性质,就使得它能从溶液中不仅吸附异号的无机离子,而且也可以吸附极性的有机分子。其吸附量决定于中和表面电荷所需的量,而吸附能则取决于被吸附离子的作用力场。因此,可用一种离子取代原先吸附于粘土矿物颗粒上的另一种离子,此即谓离子交换。依表面电性的不同,有阳离子和阴离子交换两种。
地层中粘土矿物由很小的结晶颗粒组成,根据晶体结构可以分成几组粘土矿物。对石油工业有重要意义的粘土矿物主要有高岭石、蒙脱石、伊利石、绿泥石以及这些矿物组成的混层矿物,这些矿物属于含水层状硅酸盐,其主要构造单元为二维排列的硅氧四面体和二维排列的铝或镁-氧-氢八面体。在粘土矿物的结构单元层中,硅氧四面体中的Si4 可能被Al3 取代,八面体中的Al3 可能被Mg2 、Fe2 取代,此时结构单元层中就出现了负电荷,为平衡多余的层电荷,必然出现层间阳离子。粘土矿物的层间阳离子有“固定的”和“可交换的”的两种类型。
所谓粘土,在岩石学角度是指粘粒(粒径小于2μm的颗粒)含量大于50%,具有粘结性和可塑性的土状岩石。粘土的主要组分是粘土矿物。所谓粘土矿物的概念并不十分固定,一般指作为岩石和土壤中粘粒主体的次生层状硅...
粘土矿物分析是对粒径小于0.01毫米(粘土)的碎屑矿物进行定性和定量分析的方法。该种分析方法包括有:染色分析、X射线晶体结构分析、X射线衍射分析、差热分析、光谱分析、激光显微光谱分析、电子显微镜分析、...
晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离...
粘土矿物因吸水(溶液)而体积增大的现象,即称为粘土矿物的膨润性。粘土矿物的膨润性有内部膨润和外部膨润两种。在追加水分的条件下,水被粘土矿物吸入结构单位层之间,在水分子沿层面层层展铺叠置的同时,瞬间与粘土矿物形成平行连晶,从而使原层间距(d)扩大,此即为内部膨润;发生在粘土矿物晶粒间的膨大,是为外部膨润。
贵州兴仁地区煤中粘土矿物研究
贵州兴仁地区煤中粘土矿物研究——选取贵州兴仁地区具有代表性的煤为研究对象,分离其中粘土矿物,并进行了化学成分分析,XRD衍射分析及扫描电镜配合能谱分析,查明了煤中粘土矿物的分布特征,为研究该矿区煤的形成环境提供了资料。
镉在蒙脱石等粘土矿物上的吸附行为研究
镉在蒙脱石等粘土矿物上的吸附行为研究——研究了土壤中主要硅酸盐粘土矿物蒙脱石、伊利石、高岭石、海泡石对重金属镉的吸附行为。结果表明:硅酸盐粘土矿物吸附镉受酸度和离子强度的影响;吸附反应是快反应,能很好地符合Lagergren二级吸附速度方程;优化条件...
晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、Cl-、(PO4)3-、(NO3)-。高岭石的阳离子交换容量最低,5~15毫克当量/100克;蒙脱石、蛭石的阳离子交换容量最高,100~150毫克当量/100克。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。如蒙脱石中可交换的钙或钠被有机离子取代后形成有机复合体,使层间距离增大,从原有亲水疏油转变为亲油疏水,利用这种复合体可以制备润滑脂、油漆防沉剂和石油化工产品的添加剂。其他如蛭石、高岭石、埃洛石等也能与有机质形成复合体。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。
粘土矿物的形成方式有3种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。
粘土是陶瓷工业的主要原料,其性质对陶瓷的生产有很大的影响,因此掌握粘土的性质,尤其是工艺性质是稳定陶瓷生产的基本条件。粘土的工艺性质主要取决于粘土的矿物组成、化学组成与颗粒组成,其矿物组成是基本因素。
如膨润土主要是蒙脱石矿物,由于其矿物类型及细颗粒含量较多,表现出粘性强,成形水分高,收缩大,烧结温度低等特性;苏州高岭土由于其含有大量杆状结构外形的高岭石,因而可塑性低,干燥气孔率高,干燥强度低,烧成收缩大,泥浆流动时的含水量多,且呈强烈触变性等特性。
(1)可塑性
(2) 结合性
(3)离子交换性
(4) 触变性
(5)干燥收缩与烧成收缩
(6)烧结性能
(7)耐火度
(一)可塑性
1、概念:可塑性是指粘土与适量的水结合后所形成的泥团,在外力作用下产生变形但不开裂。当外力去掉后仍保持其形状不变的能力。
该定义包括两个含义:
一是施加的外力必须大于泥团的屈服值,当外力去掉后泥团内部的引力和斥力达到新的平衡以保持其形变;
二是在产生形变量不出现开裂。
2、影响粘土可塑性的因素
1)固相的性质:主要是指固体物料类型、颗粒形状、颗粒大小及粒度分布、颗粒的离子交换能力等。一般说来固体分散相的颗粒愈小,分散度愈高,比表面积愈大,可塑性就愈好;对于具有层状结构的粘土矿物呈薄片状颗粒要比呈杆状颗粒,或呈棱角状颗粒的具有更好的可塑性;此外,粘土矿物的离子交换能力较大者,其可塑性也较高。
2)液相的性质:主要是指液相对固相的浸润能力和液相的粘度。对粘土颗粒具有较大浸润能力的液相,其与粘土拌和后就呈较高的可塑性。此类液体粘度越大,其可塑性也就越高。
3)固相与液相的相对数量
当粘土中加入的水量不多时,粘土还难以形成可塑状态,容易散碎,只有水量加入到一定程度,粘土才形成具有可塑状态的泥团,这时泥团的含水量称为塑限含水量。
若继续在泥团中加入水分,泥团的可塑性会逐渐增高,直至泥团能自行流动变形,此时的含水量称为液限含水量。
但在生产中适合于成形的泥团,其含水量一般都在塑限含水量与液限含水量之间,此时泥团的含水量称为工作泥团的可塑水量。
各种粘土的可塑水量很不一致,可塑性大的粘土所需可塑水量也愈多:
高可塑性粘土 : 可塑水量达28%~40%
中可塑性粘土: 可塑水量达20%~28%
低可塑性粘土:可塑水量达15%~20%
3、粘土可塑性的测定方法
1)可塑性指数:是指粘土的液限含水率与塑限含水率之差。它表示粘土能形成可塑泥团的水分变化范围。指数越大则成形水分范围大,成形时不易受周围环境湿度及模具的影响,即成形性能好。
2)可塑性指标:指在工作水分下,粘土泥团受外力作用最初出现裂纹时应力与应变的乘积,同时还应测定泥团的相应含水率。可塑性指标也反应了粘土泥团的成形性能的好坏,但要注意相应的含水率。若相应含水率大,则工作水分多,干燥过程易变形、开裂。
3)根据可塑指数或可塑指标分类:
强可塑性粘土 指数>15或指标>3.6
中可塑性粘土 指数7~15或指标2.5~3.6
弱可塑性粘土 指数1~7或指标<2.5
非可塑性粘土 指数<1
4、提高坯料可塑性的措施
1)将坯料原矿进行淘洗,除去所夹杂的非可塑性物料,或进行长期风化。
2)将浸润了的粘土或坯料长期陈腐。
3)将泥料进行真空处理,并多次练泥。
4)掺用少量的强可塑性粘土。
5)添加糊精、胶体SiO2 、羧甲基纤维素等胶体物质。
5、降低坯料可塑性的措施
1)加入非可塑性粘土,如石英、瘠性粘土、熟瓷粉等。
2)将部分粘土预先煅烧。
(二)结合性
1、概念:指粘土能粘结一定细度的瘠性物料,形成可塑泥团并有一定干燥强度的性能。
2、结合力的测定
在工程上要直接测定分离粘土质点所需的力比较困难,生产上常用测定由粘土制作的生坯的抗折强度来间接测定粘土的结合力。
在实验中通常以能够形成可塑泥团时所加入标准石英砂(颗粒组成为:0.25~0.15mm占70%,0.15~0.09mm占30%)的数量及干后抗折强度来反映。
加砂量可达50%时为结合力强的粘土; 加砂量达25%~50%时为结合力中等的粘土; 加砂量在20%以下时为结合力弱的粘土。
(三)离子交换性
1、概念:粘土颗粒带有电荷,其来源是其表面层的断键和晶格内部被取代的离子,因此必须吸附其它异号离子来补偿其电价,粘土的这种性质称为离子交换性。
2、交换容量:表示离子交换的能力,它是100g干粘土所吸附能够交换的阳离子或阴离子的量。单位为微摩尔﹒10/克(mol﹒10/g)。
影响离子交换容量的因素:
1)粘土矿物的种类。
2)粘土中有机物含量和粘土矿物的结晶程度。
3)吸附的离子种类。粘土吸附阳离子的能力比阴离子要大。而粘土吸附阳离子的种类不同,其交换容量也不同。
(四)触变性
1、概念:粘土泥浆或可塑泥团受到振动或搅拌时,粘度会降低而流动性增加,静置后逐渐恢复原状。此外,泥料放置一段时间后,在维持原有水分的情况下也会出现变稠和固化现象,这种性质统称为触变性。
2、在生产中一般希望泥料有一定触变性。泥料触变性过小时,成形后生坯的强度不够,影响脱模与修坯的质量。触变性过大时,在管道输送过程中会带来不便,成形后生坯也易变形。因此控制泥料的触变性,对满足生产需要,提高生产效率和产品品质有重要意义。
3、影响粘土的触变性的因素:粘土的矿物组成、粒度大小与形状、水分含量、使用电解质种类与用量、以及泥料(包括泥浆)的温度等。
矿物颗粒愈细,活性边表面愈多,愈易呈触变性;
球状颗粒不易显示触变性;
触变效应与吸附离子及吸附离子的水化密切相关。粘土吸附的阳离子其价数愈小或价数相同而离子半径愈小者,其触变效应愈大。
含水量大的泥浆,不易形成触变结构,反之易形成触变结构而呈触变现象。
温度升高,粘土质点的热运动剧烈,使粘土颗粒间的联系力减弱,不易建立触变结构,从而使触变现象减弱。
4、粘土泥料的触变性的测定
以厚化度(或稠化度)来表示。厚化度以泥料的粘度变化之比或剪切应力变化的百分数来表示。
1)泥浆的厚化度是泥浆放置30min和30s后其相应粘度之比。即
泥浆厚化度=t30min /t30s
式中:t30min 为100ml泥浆放置30min后,由恩式粘度计中流出的时间;t30s 为100ml泥浆放置30min后,由恩式粘度计中流出的时间。
2)可塑泥团的厚化度为放置一定时间后,球体或圆锥体压入泥团达一定深度时剪切强度增加的百分数。
泥团厚化度 = (Fn-F0)/ F0×100%
式中: F0 ----泥团开始承受的负荷,N;Fn ----经过一定时间后, 球体或锥体压入相同深度时泥团承受的负荷,N。
(五)干燥收缩和烧成收缩
1、概念:粘土泥料干燥时,因包围在粘土颗粒间的水分蒸发,颗粒相互靠拢引起体积收缩,称为干燥收缩。
粘土泥料在煅烧时,由于发生一系列的物理化学变化(如脱水作用、分解作用、莫来石的生成、易熔杂质的熔化,以及这些熔化物充满质点间空隙等等),引起粘土再度收缩,称为烧成收缩。
这两种收缩构成粘土泥料的总收缩。
2、收缩测定是以直线长度或体积大小的变化来表示。为了方便起见,可将体积收缩近似等于直线收缩的3倍,但有6%~9%的误差。
(六)烧结温度与烧结范围
1、概念:
粘土在煅烧过程中,温度超过900℃以上时,低熔物开始出现,低熔物液相填充在未熔颗粒之间的空隙中,并由其表面张力的作用,将未熔颗粒进一步靠近,使体积急剧收缩,气孔率下降,密度提高。这种体积开始剧烈变化的温度称为开始烧结温度(T1)。
随着温度的继续升高,粘土的气孔率不断降低,收缩不断增大,当其密度达到最大状态时(一般以吸水率等于或小于5%为标志),称为完全烧结,相应于此时的温度叫烧结温度(T2)。
从完全烧结开始,温度继续上升,会出现一个稳定阶段,体积密度和收缩等不发生显著变化。持续一段时间后,由于粘土中的液相不断增多,以致于不能维持粘土原有的形状而变形,同时也会发生一系列高温化学反应,使粘土试样的气孔率反而增大,出现膨胀。出现这种情况的最低温度称为软化温度( T3 )。
通常把烧结温度到软化温度之间粘土试样处于相对稳定阶段的温度范围称为烧结范围( T2 ~T3)。
烧结范围的大小取决于粘土中熔剂矿物的种类和数量。优质高岭土可达200℃,伊利石类粘土仅为50~80℃。陶瓷生产中通常要求粘土具有100~150℃以上或更宽的烧结范围。
烧成温度范围取决于液相量的生成速度和液相粘度随温度变化的幅度。若粘土中含有的熔剂杂质数量多,液相量增加速率大,而液相粘度随温度的升高下降的幅度大,其烧结温度范围较窄。纯耐火粘土的烧结温度范围为250℃,低钙泥灰岩仅20~30℃。
烧结范围愈宽,陶瓷制品的烧成操作愈容易掌握,也愈容易得到煅烧均匀的制品。
粘土的烧结温度和烧结温度范围通常采用实验方法确定,也可用粘土化学成分进行估算。
2、生产中常用吸水率来反映原料的烧结程度。一般要求粘土原料烧后的吸水率<5%。
(七)耐火度
1、概念:耐火度是指材料在高温作用下达到特定软化程度时的温度。它反映了材料抵抗高温作用的性能。
2、粘土的耐火度主要取决于其化学组成。
Al2O3含量高其耐火度就高,碱类氧化物能降低粘土的耐火度。通常可根据粘土原料中的Al2O3/SiO2比值来判断耐火度,比值愈大,耐火度愈高,烧结范围愈宽。
3、耐火度的测定——三角锥法:是将一定细度的原料制成一截头三角锥(高30mm,下底边长8mm,上顶边长2mm),在高温电炉中以一定的升温速度加热,当锥内复相体系因重力作用而变形以致顶端软化弯倒至锥底平面时的温度,即是试样的耐火度 。