选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 市政百科

二叉排序树

二叉排序树(Binary Sort Tree)或者是一棵空树;或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;(3)左、右子树也分别为二叉排序树;

二叉排序树基本信息

二叉排序树基本步骤

若根结点的关键字值等于查找的关键字,成功。

否则,若小于根结点的关键字值,递归查左子树。

若大于根结点的关键字值,递归查右子树。

若子树为空,查找不成功。

插入算法:

首先执行查找算法,找出被插结点的父亲结点。

判断被插结点是其父亲结点的左、右儿子。将被插结点作为叶子结点插入。

若二叉树为空。则首先单独生成根结点。

注意:新插入的结点总是叶子结点。

void InsertBST(t,key)

//在二叉排序树中插入查找关键字key

{

if(t==NULL){

t=new BiTree;

t->lchild=t->rchild=NULL;

t->data=key;

return; }

if(keydata ) InsertBST(t->lchild,key);

else InsertBST (t->rchild, key );

}

void CreateBiTree(tree,d【 】,n)

//n个数据在数组d中,tree为二叉排序树根

{tree=NULL;

for(i=0;i InsertBST(tree,d);

}

查看详情

二叉排序树造价信息

  • 市场价
  • 信息价
  • 询价

二叉

  • S-8
  • 13%
  • 大连东方泰陶建材经销部
  • 2025-07-21
查看价格

二叉

  • 200X120X100mm
  • 金九方
  • 13%
  • 佛山市金九方陶瓷有限公司
  • 2025-07-21
查看价格

二叉(四类色)

  • S-8
  • 比特利
  • 13%
  • 重庆比特利建材有限公司
  • 2025-07-21
查看价格

二叉(三类色)

  • S-8
  • 比特利
  • 13%
  • 重庆比特利建材有限公司
  • 2025-07-21
查看价格

二叉类色)

  • S-8
  • 比特利
  • 13%
  • 重庆比特利建材有限公司
  • 2025-07-21
查看价格

日本瓦[J-四]

  • 韶关市2009年11月信息价
  • 建筑工程
查看价格

日本瓦[J-四]

  • 韶关市2009年7月信息价
  • 建筑工程
查看价格

日本瓦[J-四]

  • 韶关市2008年9月信息价
  • 建筑工程
查看价格

日本瓦[J-四]

  • 韶关市2008年8月信息价
  • 建筑工程
查看价格

日本瓦[J-四]

  • 韶关市2008年1月信息价
  • 建筑工程
查看价格

二叉

  • S-8
  • 3645
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2015-11-24
查看价格

二叉喷头

  • DN15
  • 6779
  • 1
  • 中档
  • 不含税费 | 不含运费
  • 2015-10-20
查看价格

二叉

  • -
  • 1
  • 1
  • 不含税费 | 不含运费
  • 2017-06-12
查看价格

二叉

  • 200X120X100mm
  • 9894
  • 1
  • 金九方
  • 中档
  • 含税费 | 不含运费
  • 2015-12-24
查看价格

二叉头路灯

  • 高度5米,功率2×30W,光源LED
  • 4
  • 3
  • 中档
  • 含税费 | 含运费
  • 2019-01-28
查看价格

二叉排序树常见问题

查看详情
一种基于有序二叉树的变量池的设计和应用 一种基于有序二叉树的变量池的设计和应用

一种基于有序二叉树的变量池的设计和应用

格式:pdf

大小:71KB

页数: 4页

分层模式在软件开发中有着广泛的应用,必然使各层之间产生频繁的数据交互,从而导致软件性能大大下降。针对上述问题,本文提出一种基于有序二叉树的变量池的解决方案,软件的配置信息以及各层之间的交互数据保存在变量池中,对变量的所有操作都基于变量池,通过变量池的使用,既方便了各层之间数据交互,也简化了各层之间的接口设计。基于该方案,本文最后实现了一个银行自助终端系统。

第8章排序介绍 第8章排序介绍

第8章排序介绍

格式:pdf

大小:73KB

页数: 10页

第 8 章 排序 1.选择题 ( 1)从未排序序列中依次取出元素与已排序序列中的元素进行比较, 将其放入已排序序 列的正确位置上的方法,这种排序方法称为( )。 A.归并排序 B.冒泡排序 C.插入排序 D.选择排序 答案: C ( 2)从未排序序列中挑选元素,并将其依次放入已排序序列(初始时为空)的一端的方 法,称为( )。 A.归并排序 B.冒泡排序 C.插入排序 D.选择排序 答案: D ( 3)对 n 个不同的关键字由小到大进行冒泡排序,在下列( )情况下比较的次数最 多。 A.从小到大排列好的 B.从大到小排列好的 C.元素无序 D.元素基本有序 答案: B 解释:对关键字进行冒泡排序,关键字逆序时比较次数最多。 ( 4)对 n 个不同的排序码进行冒泡排序, 在元素无序的情况下比较的次数最多为 ( )。 A. n+1 B. n C. n-1 D. n(n-1)/2 答案:

二叉排序树查找内容

1.二叉排序树的概念:

二叉排序树是一种动态树表。

二叉排序树的定义:二叉排序树或者是一棵空树,

或者是一棵具有如下性质的二叉树:

⑴ 若它的左子树非空,则左子树上所有结点的值均小于根结点的值;

⑵ 若它的右子树非空,则右子树上所有结点的值均大于根结点的值;

⑶ 左、右子树本身又各是一棵二叉排序树。二叉排序树的性质: 按中序遍历二叉排序树,所得到的中序遍历序列是一个递增有序序列。

2.二叉排序树的插入:

在二叉排序树中插入新结点,要保证插入后的二叉树仍符合二叉排序树的定义。

插入过程:若二叉排序树为空,则待插入结点*S作为根结点插入到空树中;

当非空时,将待插结点关键字S->key和树根关键字t->key进行比较,

若s->key = t->key,则无须插入,若s->key< t->key,则插入到根的左子树中,

若s->key> t->key,则插入到根的右子树中。而子树中的插入过程和在树中的插入过程相同,

如此进行下去,直到把结点*s作为一个新的树叶插入到二叉排序树中,或者直到发现树已有相同关键字的结点为止。

3. 二叉排序树生成:

从空的二叉排序树开始,经过一系列的查找插入操作以后,生成了一棵二叉排序树。

说明:

① 每次插入的新结点都是二叉排序树上新的叶子结点。

② 由不同顺序的关键字序列,会得到不同二叉排序树。

③ 对于一个任意的关键字序列构造一棵二叉排序树,其实质上对关键字进行排序。

4.二叉排序树查找的程序实现:

5. 二叉排序树的删除:

假设被删结点是*p,其双亲是*f,不失一般性,设*p是*f的左孩子,下面分三种情况讨论:

⑴ 若结点*p是叶子结点,则只需修改其双亲结点*f的指针即可。

⑵ 若结点*p只有左子树PL或者只有右子树PR,则只要使PL或PR 成为其双亲结点的左子树即可。

⑶ 若结点*p的左、右子树均非空,先找到*p的中序前趋结点*s(注意*s是*p的左子树中的最右下的结点,它的右链域为空),然后有两种做法:

① 令*p的左子树直接链到*p的双亲结点*f的左链上,而*p的右子树链到*p的中序前趋结点*s的右链上。

② 以*p的中序前趋结点*s代替*p(即把*s的数据复制到*p中),将*s的左子树链到*s的双亲结点*q的左(或右)链上。

6. 删除算法演示 :

7. 二叉排序树的查找:

在二叉排序树中进行查找的过程和二分查找类似,也是一个逐步缩小查找范围的过程。若查找成功,则是走了一条从根结点到待查结点的路径;若查找失败,则是走了一条根结点到某个叶子结点的路径。因此,查找过程中和关键字比较的次数不超过树的深度。

由于含有n个结点的二叉排序树不唯一,形态和深度可能不同。故含有n个结点的二叉排序树的平均查找长度和树的形态有关。

最好的情况是: 二叉排序树和二叉判定树形态相同。

最坏的情况是: 二叉排序树为单支树,这时的平均查找长度和顺序查找时相同。

最坏情况示例

就平均性能而言,

二叉排序树上的查找和二分查找相差不大,并且二叉排序树上的插入和删除结点十分方便,无须大量移动结点。

查看详情

二叉排序树查找主题

二叉排序树查找

查看详情

Treap介绍

我们可以看到,如果一个二叉排序树节点插入的顺序是随机的,这样我们得到的二叉排序树大多数情况下是平衡的,即使存在一些极端情况,但是这种情况发生的概率很小,所以我们可以这样建立一颗二叉排序树,而不必要像AVL那样旋转,可以证明随机顺序建立的二叉排序树在期望高度是O(logn),但是某些时候我们并不能得知所有的带插入节点,打乱以后再插入。所以我们需要一种规则来实现这种想法,并且不必要所有节点。也就是说节点是顺序输入的,我们实现这一点可以用Treap。

Treap=Tree+Heap

Treap是一棵二叉排序树,它的左子树和右子树分别是一个Treap,和一般的二叉排序树不同的是,Treap纪录一个额外的数据,就是优先级。Treap在以关键码构成二叉排序树的同时,还满足堆的性质(在这里我们假设节点的优先级大于该节点的孩子的优先级)。但是这里要注意的是Treap和二叉堆有一点不同,就是二叉堆必须是完全二叉树,而Treap可以并不一定是。

查看详情

相关推荐

立即注册
免费服务热线: 400-823-1298