选择特殊符号
选择搜索类型
请输入搜索
电去离子(Electrodeionization 简称EDI)是将电渗析膜分离技术与离子交换技术有机地结合起来的一种新的制备超纯水(高纯水)的技术,它利用电渗析过程中的极化现象对填充在淡水室中的离子交换树脂进行电化学再生。
EDI膜堆主要由交替排列的阳离子交换膜、浓水室、阴离子交换膜、淡水室和正、负电极组成。在直流电场的作用下,淡水室中离子交换树脂中的阳离子和阴离子沿树脂和膜构成的通道分别向负极和正极方向迁移,阳离子透过阳离子交换膜,阴离子透过阴离子交换膜,分别进入浓水室形成浓水。同时EDI进水中的阳离子和阴离子跟离子交换树脂中的氢离子和氢氧根离子交换,形成超纯水(高纯水)。超极限电流使水电解产生的大量氢离子和氢氧根离子对离子交换树脂进行连续的再生。传统的离子交换,离子交换树脂饱和后需要化学间歇再生。而EDI膜堆中的树脂通过水的电解连续再生,工作是连续的,不需要酸碱化学再生。
EDI超纯水技术具有技术先进、操作简便、无污染,是清洁生产技术,在微电子工业、电力工业、医药工业、化工工业和实验室等领域得到日趋广泛的应用。
受成本、环境和质量因素的影响, 超纯水的生产工艺在最近的几十年内经历了很多变化。一个趋势特别明显,即减少对离子交换(IX)的依赖程度,其目的在于将化学药品使用减少到最低,并提高水的利用率。
反渗透(RO)技术能将水中95%-98%的离子去除,从而大大减少了酸碱的用量,但还不能完全不使用化学药品。为了制备超纯水,通常采用反渗透 混床工艺。混床离子交换技术一直作为超纯水制备的标准工艺。由于其需要周期性的再生,在再生过程中使用相应的化学药品(酸碱),已无法满足现代工业清洁生产和环保的需要。于是将电渗析技术和离子交换技术有机结合形成的EDI技术成为水处理技术的一场革命。
超纯水设备工作原理 它采用的是诞生于50年代的反渗透膜技术,这项技术目前广泛运用于医学(如肾病血液透析)、航天(宇航员体液循环)、海水淡化等高新科技领域,近年运用此技术又开发出运用于民间的水净...
EDI工作原理: EDI模块将离子交换树脂充夹在阴/阳离子交换膜之间形成EDI单元。EDI工作原理如图所示。 EDI模块中将一定数量的EDI单元间用格板隔开,形成浓水室和淡水室。又在单元组两端设置阴/...
科瑞水处理专业为您解答: EDI(Electrideionization)其实是电去离子的英文简称,是一种通过离子交换对水进行处理的技术。具体的讲是将交换离子的膜运用技术还有离子的电迁移技术完美结合...
电力锅炉补给水系统超纯水设备方案
电力锅炉补给水系统超纯水设备方案 一、电力锅炉补给水系统超纯水概述 长期的锅炉运行实践表明:锅炉的给水水质,是影响锅炉及热力系统安全、 稳定、经济运行的重要因素之一。 没有经过净化处理的水中含有许多杂质, 特别 是钙镁离子,这些杂质如果随给水进入锅炉系统,将会造成极大危害。 1、形成水垢,导致锅炉受热不均匀,损坏金属 ; 2、降低热效率,增加能耗 ; 3、清洗水垢需加药剂,增加运行成本 ; 4、导致金属腐蚀 ; 5、易使蒸汽品质恶化。 电力、热力行业的大中型锅炉, 由于运行参数高, 原用锅炉爆管等原因停机 造成的经济损失惨重,社会影响巨大,因此对锅炉补给水的水质要求特别高 (电 厂锅炉要求水质,电阻率 >5MΩ.CM、SiO2<20μg/L) 。一般的电厂、热力中心均 设立化水车间,对锅炉补给水进行处理。 燃煤火力发电厂是我国电力工业的重要组成部分。 水在电力工业中的用途是 多方面
蓄电池行业用超纯水设备中使用的原水泵和高压泵起到的作用是什么
领先流体过滤与分离技术解决方案服务商 蓄电池行业用超纯水设备中使用的原水泵 和高压泵起到的作用是什么 2020年 3月 17日 领先流体过滤与分离技术解决方案服务商 蓄电池行业用超纯水设备中使用的原水泵和高压泵起到的作用是什么 ?下面 为大家一一说明: 原水泵 原水泵给蓄电池行业用超纯水设备的石英砂过滤器、 活性碳过滤器及精滤器 提供增压保证。 确保增压后的水压大于石英砂过滤器、 活性碳过滤器与精滤过滤 器的渗透阻力,使增压后的水高效通过预处理系统, 为反渗透系统提供充足水源。 原水泵可以用离心泵,也可以用轴流泵,要视扬程高低决定。 高压泵 高压泵是为了使反渗透的进水达到一定的压力, 让反渗透过程得以进行, 即 克服渗透压使水分子透过反渗透膜到达淡水层。 蓄电池行业用超纯水设备的高压 泵进出口装有低压和高压保护, 当供水量不足使高压泵入口的水压低于某一设定 值,会自动发出信号停止高压泵运行
EDI超纯水设备从发明以来,代替了传统的离子交换水处理技术达到了现代工业和环保的需求,所以当纯水设备中的EDI出现问题和损坏时势就会影响企业的正常生产,增加公司的运营成本。
超纯水设备EDI损坏原因总结:
1、EDI膜块长期在大电流,低于额定流量情况下运行,极板侧积聚的热量得不到有效散发,造成EDI接近两极的膜片和隔网先发热变形,EDI浓水压差增加,水质和水量下降,严重会碳化漏水。
2、EDI膜块长期没有清洗保养,EDI的膜片和通道结垢,进出水压差增加,造成产水水质下降,电流无法调节,电压上升。
3、超滤系统控制余氯等氧化剂不当,进EDI氧化剂超量,导致EDI树脂破碎,堵塞产水通道,水量下降。
4、采用不当的清洗和消毒,直接导致EDI树脂破碎,进出水压差增大,造成产水水质和水量下降。
5、EDI系统手动运行时,在缺水状态下加电,直接导致膜片和树脂的发热碳化,清洗无效,无法使用。
6、EDI进水前无保安滤器,或安装时没有清洗管道和水箱,导致异物堵塞EDI通道,进出水压差增加,造成产水水量严重下降,清洗无效。
7、电流电压超出额定值或人为误操作。
8、系统工艺设计不当,没有达到EDI的使用条件。
9、系统维护管理不当,没有遵守EDI的使用条件。
所以为了超纯水设备正常运转,不影响企业生产请谨慎按照说明操作。
以上文章是来源于君浩环保(http://www.jhscl.net),专注于水处理设备的生产销售17年,转载请注明出处。
EDI超纯水设备运行过程中电阻率下降的原因跟进水水质、压力、流量、电压、进水水质的污染等等都有关系,下面大概讲一下导致EDI超纯水设备电阻率下降的原因。
1、反渗透设备出水不合格(含电导率、硬度、变价金属等)
若是原水含盐量高,建议采用双极RO反渗透设备作为预除盐,其电导率保持在1~3μS/cm为最佳;进水CO2含量高,建议采用脱气膜或脱气塔将CO2去除。pH偏离中性太多,采用pH调节,使EDI进水pH值在7~8即可。
2、EDI系统电流控制上出现问题
工作电流增大,产水水质不断变好。但如果在增至最高点后再增加电流,由于水电离产生的H+和OH-离子量过多,除用于再生树脂外,大量富余离子充当载流离子导电,同时由于大量载流离子移动过程中发生积累和堵塞,甚至发生反扩散,结果使产水水质下降。
3、pH值变化
EDI系统进水CO2含量高,如果CO2含量大于10ppm,EDI系统就不能制备高纯水了(重点)。
4、铁的污染
EDI系统运行中的铁污染,是造成其产水电阻进行性下降的主要原因之。如果在原水和预处理系统中,采用普通钢管,没有进行内部防腐处理,会造成系统内铁含量增高,铁被腐蚀后,溶解在水中大都以Fe(OH)2的形式存在,并进一步氧化,变成Fe(OH)3。Fe(OH)2是胶态物质,Fe(OH)3是悬浮状态。树脂对铁的亲和力强,被树脂吸附后,会造成不可逆反应。在阴、阳离子交换水处理中,阴、阳床会经过再生或清洗,可把树脂内的铁大部分除去。但在EDI设备的运行中,则没有再生和清洗,水中的微量铁元素便会在阴、阳树脂和阴、阳膜上黏附。铁的导电性能强,还来不及与阳离子树脂反应,便被EDI组件内靠近阴膜水中,在大电流的作用下向阳膜迁移。单纯的铁离子易于穿透,而胶状物的铁化合物则不易穿透阳膜,便被吸附在阳膜表面,污染阴、阳膜,最终导致EDI组件的工作性能下降,产水质量差,电阻值呈现进行性降低。
5、有机物污染
EDI纯水设备进水中有机物胶体污染,反渗透只能去除相对分子量大于200的有机物胶体。低于200分子量的便进人EDI系统。这部分低分子量的物质便被组件内的阴、阳离子交换树脂吸附在骨架的网孔上和阴、阳膜的表面上,阻碍阴、阳离子的置换反应和水中离子穿透阴、阳膜的速度,从而造成EDI工作性能下降,产水的电阻率下降。
EDI装置将离子交换树脂充夹在阴/阳离子交换膜之间形成EDI单元。EDI组件中将一定数量的EDI单元间用网状物隔开,形成浓水室。又在单元组两端设置阴/阳电极。在直流电的推动下,通过淡水室水流中的阴阳离子分别穿过阴阳离子交换膜进入到浓水室而在淡水室中去除。而通过浓水室的水将离子带出系统,成为浓水. EDI设备一般以反渗透(RO)纯水作为EDI给水。RO纯水电导率一般是40-2μS/cm(25℃)。EDI纯水电阻率可以高达18 MΩ.cm(25℃),但是根据去离子水用途和系统配置设置,EDI纯水适用于制备电阻率要求在1-18.2MΩ.cm(25℃)的纯水。