选择特殊符号
选择搜索类型
请输入搜索
电压用符号"U"表示。电压的高低,一般是用单位“伏特”表示,简称“伏”,用符号"V"表示。高电压可以用千伏(kV)表示,低电压可以用毫伏(mV)表示,也可以用微伏(μV)表示。
它们之间的换算关系是:
1千伏 (kV)=1000伏(V)
1伏 (V)=1000毫伏(mV)
1毫伏(V)=1000微伏(μV)
在实际运用中,我们常遇到两个物理量,电压和电动势。有人认为电压就是电动势,这种观点是错误的。电压是外电路中两点间存在的电位差;而电动势则是电源内部所具有的把正电荷从负极移到正极,建立并维持电位差的能力。简而言之,使电源两端产生和维持一定的电位差的能力叫电动势。单位是“伏特”,用字母“E”表示。电动势的方向是从电源负极(低电位)通过电源内部指向正极(高电位)。电压的方向是从电源正极(高电位)通过外电路指向负极(低电位)。2100433B
电压(voltage),也称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作用从A点移动到B点所做的功,电压的方向规定为从高电位指向低电位的方向。电压的国际单位制为伏特(V,简称伏),常用的单位还有毫伏(mV)、微伏(μV)、千伏(kV)等。此概念与水位高低所造成的“水压”相似。需要指出的是,“电压”一词一般只用于电路当中,“电势差”和“电位差”则普遍应用于一切电现象当中 。
如果电压的大小及方向都不随时间变化,则称之为稳恒电压或恒定电压,简称为直流电压,用大写字母U表示。如果电压的大小及方向随时间变化,则称为变动电压。对电路分析来说,一种最为重要的变动电压是正弦交流电压(简称交流电压),其大小及方向均随时间按正弦规律作周期性变化。交流电压的瞬时值要用小写字母u或u(t)表示。在电路中提供电压的装置是电源。
单位:
电压在国际单位制中的主单位是伏特(V),简称伏,用符号V表示。[1]1伏特等于对每1库仑的电荷做了1焦耳的功,即1 V = 1 J/C。强电压常用千伏(kV)为单位,弱小电压的单位可以用毫伏(mV)微伏(μv)。
它们之间的换算关系是:
1kV=1000V
1V=1000mV
1mV=1000μv
“对称短路”严格的说法是“三相对称短路”。三相对称短路一般是非对称故障发展的结果。(不讨论暂态过程)当系统发生三相短路进入稳态时,故障点三相电压为零,电源侧向故障点输送短路电流。离故障点越远电压越高(...
电感元件电流变化时,电感会感应出反电动势,也就是你说的电压,它们的关系是 电压=L×电流对时间求导 所以电感元件的电流变化越快,电压就越大 L是自感系数
开关电源变压器的某一次级负载变化能否引起初级电压的变化或其他绕组电压变化呢?
电源容量足够大(电网),开关电源变压器的某一次级负载变化不会引起初级电压的变化,但次级的其中一绕组的负载过大时,会引起其他绕组的电压变化。因变压器的输入功率≈输出功率。
用电压变化和脉冲持续时间变化控制霓虹灯的发光变化研究
该文阐述了霓虹灯的应用前景和变色机理,分析了霓虹灯可以用电压变化控制色彩变化和用脉冲持续变化控制色彩变化的原理,并用实验的方法实现了单管霓虹灯可以发出多色光的成果研究。
全年表层15cm土层的平均温度较气温为高;心土则秋冬比气温高,而春夏较冷。这是由于心土处于被掩蔽状态和热传导的滞后性所造成的。心土温度变化钓滞后性特别值得注意,除表层温度在短时间内的变化可能很大外,心上的温度变化是相当平缓的,土温的全年变化是:在晚秋-冬天-早春,表土层温度低于心土层,故热流是由土壤深处向地表运动,而在晚春夏天早秋,则表土层温度高于心土层,热流则由表土层向心土层运动。一般说,季节变化的变幅随深度的增加而减小,在高纬度消失于25m深处,在中纬度消失于15~20m深处,在低纬度则消失于5~10m深处。
在温带地区太阳辐射使气温从早展开始上升,到下午2时左右达到最高温,表土温度也随之上升,但由于土温的滞后现象,通常要在下午2时后或更迟的时间才达到最高温度。
3.1 合闸瞬间电压为最大值时的磁通变化
在交流电路中,磁通Φ总是落后电压u90°相位角。如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。在这种情况下,变压器不会产生励磁涌流。
3.2 合闸瞬间电压为零值时的磁通变化
当合闸瞬间电压为零值时,它在铁芯中所建立的磁通为最大值(-Φm)。可是,由于铁芯中的磁通不能突变,既然合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。因此,在铁芯中就出现一个非周期分量的磁通Φfz,其幅值为Φm。
这时,铁芯里的总磁通Φ应看成两个磁通相加而成,如图2所示。铁芯中磁通开始为零,到1/2 T时,两个磁通相加达最大值,Φ波形的最大值是Φ1波形幅值的两倍。因此,在电压瞬时值为零时合闸情况最严重。虽然我们很难预先知道在哪一瞬间合闸,但是总会介于上面论述的两种极限情况之间。
变压器绕组中的励磁电流和磁通的关系由磁化特性所决定,铁芯越饱和,产生一定的磁通所需的励磁电流就愈大。由于在最不利的合闸瞬间,铁芯中磁通密度最大值可达2Φm,这时铁芯的饱和情况将非常严重,因而励磁电流的数值大增,这就是变压器励磁涌流的由来。励磁涌流比变压器的空载电流大100倍左右,在不考虑绕组电阻的情况下,电流的峰值出现在合闸后经过半周的瞬间。但是,由于绕组具有电阻,这个电流是要随时间衰减的。对于容量小的变压器衰减得快,约几个周波即达到稳定,大型变压器衰减得慢,全部衰减持续时间可达几十秒。
综上所述,励磁涌流和铁芯饱和程度有关,同时铁芯的剩磁和合闸时电压的相角可以影响其大小。
当一个物体系统没接受热而进行状态变化时,体积一旦出现变化,就会发生温度变化,这种变化称为绝热温度变化。