选择特殊符号
选择搜索类型
请输入搜索
变循环发动机概念的提出可以追溯到20世纪60年代,随着涡轮风扇发动机的问世,它优越的亚音速性能,高的推进效率,使得发动机设计师不断地追求更大涵道比的发动机。在超音速飞行状态,由于大涵道比的涡扇发动机耗油率明显高于等推力级的小涵道比涡扇发动机,因此限制了超音速飞机发动机涵道比的进一步增加,为了使航空发动机在亚音速和超音速状态下都具有较好的性能,国外航空发动机科学家提出了变几何和变循环发动机思想。
变循环发动机的优点就是在宽广的飞行包线内,都能保持很好的效率和较低的耗油率,可以看作将亚音速性能很好的大涵道比涡扇与超音速性能很好的小涵道比涡扇、涡喷取各自优点,结合成一台发动机。实践证明,变循环发动机技术以其内在的性能优势,能够满足强大的军事需求,并显示出巨大的应用发展潜力,已经受到各航空强国的重视、是航空动力主流的研究方向。
特别是在先进战斗机研究方面,自20世纪60年代以来,战斗机一方面朝着多用途方向发展;另一方面,飞机的飞行包线不断扩大,特别是在20世纪80年代后,人们更加重视飞机机体/推进系统一体化设计,由于变循环发动机在满足上述指标方面的优势尤为明显,于是,对军用战斗机的变循环发动机研究逐步开展起来。国外最早的变循环发动机是美国20世纪60年代初在SR-71“黑鸟”上使用的J58发动机,该发动机可在涡喷发动机模式和冲压发动机模式之间转换。
迄今,变循环发动机技术已有50年的探索研究与发展历程。国外各大航空发动机公司,如英国的罗·罗公司,法国的SNECMA公司、日本的工业科学与技术研究所和美国的GE公司等,均在不断地进行变循环发动机概念设计和方案设计研究,并进行试验验证。
飞机发动机技术提升的核心在于——如何提高燃油使用效率。喷气式飞机原理是将空气吸入发动机后和燃油混合加热,而后高温高压气体向后喷出,按照牛顿第三定律,飞机就可以获得一个反推力。但这个高温高压气体本身就拥有很大的能量,也就是说,这些能量被白白浪费掉了,但有时候为了机动性则不得不这样做,以往的飞机,往往是涡喷就只能是涡喷模式工作,是涡扇就只能涡扇模式工作。而在飞机航行的整个过程中,往往有很多路程是不需要使用这种高油耗率的工作方式的。而在靠近战场时,为了接敌,则需要高速机动,为了机动空战则需要跨音速飞行模式。于是变循环发动机就是把这三种模式结合起来,合理规划,达到了最佳的使用效果。
发动机一般从前往后结构以此为进气道——压气机——燃烧室——涡轮——喷口。对应的过程是空气吸入——空气压缩增压——空气混合燃烧——带动涡轮旋转——尾部喷出做功。变循环发动机则采用涡轮风扇体制,将气流分在三个涵道,但这三个涵道可以变换大小口径,通过组合搭配成就最佳的工作模式,在需要经济巡航时,2个调节板向下调节,挡住通过燃烧室的气流,使发动机工作在螺旋桨模式,当需要进行跨音速机动时,调节板1向下,而向上,组成一个涡扇发动机。当要进行超音速巡航时,调节板1、2均向上偏,使其成为一台涡喷发动机。假如发动机使用了任务规划体制,还可以根据不同的任务使用电脑规划发动机的作用方式达到最佳作战效能。
这个措施看起来简单,但在工程上实现起来是十分难的,发动机工作在高温高压和极高转速的情况下,最好不要有任何的结构变换,否则会带来发动机部件的损伤导致发动机出现安全问题,挡板的偏移也会带来气流的瞬时畸变,导致发动机工作不稳定甚至停车。根据研制该技术的GE公司官网宣传资料,使用这一技术后,在同等燃油的情况下飞机的滞空时间可以提高50%,航程增加33%,减少25%的燃油消耗率,达到60%的燃油热吸收率。
变循环发动机是一种多设计点发动机,通过改变一些部件的几何形状、尺寸或位置,来调节其热力循环参数(如增压比、涡轮进口温度、空气流量和涵道比),改变发动机循环工作模式(高推力或低油耗)使发动机在各种飞行情况下都能工作在最佳状态。与此同时,变循环发动机能以多种模式(包括涡轮模式、涡轮风扇模式和冲压模式等)工作,因而在亚声速、跨声速、超声速和高超声速飞行状态下都具有良好的性能,在涡喷/涡扇发动机领域,变循环发动机研究的重点是改变涵道比,如发动机在爬升、加速和超声速飞行时涵道比减小,接近涡喷发动机的性能,以增大推力;在起飞和亚声速飞行时,加大涵道比,以涡扇发动机状态工作,降低耗油率和噪声。
中文名称:燃烧室 英文名称:combustor 相关技术:燃烧室;传热学;热力学;燃油喷嘴;火焰筒;冷却技术;燃烧室试验技术 分类:发动机;燃烧室; 定义与概念: 主燃烧室是航空发动机三大部件之一,位...
这张照片看的最直观了。 这架迫降的图154就打开了反推,简单说就是两块板子放在发动机后面,把出吹来的气,反方向反弹回去。就是楼上说的,对着墙壁吹风扇。其他的机型也基本都是这个原理。
涡轮的作用主要是使热膨胀后的燃汽做功带动前面的压汽机或风扇,极小部分用作推力(主要还是风扇做功),压气机是通过贝努利定理,即压力与体积成反比(气流在低于音速时有效),不断压缩空气(压气机都是一级比一级...
在未来陆、海、空、天、电多维力量和多维战场的信息化战争中,配装先进动力系统的航空武器装备是一个重要环节,是夺取制空权和决定战争胜负的决定性因素之一。传统航空涡轮发动机的热力循环特性是固定不变的,一种发动机只能在一种模式下工作,并且仅在有限的飞行范围内具有最好的性能。
航空发动机基本原理都是将燃油的能量转化为发动机的推力,而后在推动飞机前进的过程中使飞机和空气互相作用产生向上的升力将飞机拉起。从发动机出现至今,共有螺旋桨发动机、涡扇发动机、涡轮发动机、冲压发动机四种形态,这四种发动机各有特点,其中涡桨发动机依靠螺旋桨风扇的推力做功推动飞机前进,其飞行效率高,最省油,航程大,但推力却较小。涡喷发动机依靠向喷管外喷射气流做功,可以达到很大的推力,但却非常耗油。
涡扇发动机则是将二者结合起来,设置内外两个涵道,使得一部分推力来自于涡扇,一部分推力来自于喷口,这样就取得一个适中的性能,成就了其在音速边界范围内的机动性。但总的来说,为了应付空战需求,发动机需要推力更大些以完成高机动动作,为了进行更远程的打击,就需要发动机更省油,这两个矛盾的要求一直困扰着科学家。
从飞机的发展来看,因为现代战机的机载设备量急剧攀升,因此重量较以前大大增加,但发动机却只能在推力和航程中取折中,这就导致了现代飞机作战航程甚至比不上二战很多主战飞机。为了弥补这个差距,就需要进行变循环设计,让飞机在能够不同时刻工作在不同的状态。
变循环发动机技术是一项综合性较强的技术,与传统涡扇发动机相比技术跨度很大,主要表现为调节参数增加,控制规律更加复杂,对发动机可靠性、维修性也带来了挑战。由于增加了核心机驱动风扇,传力路径和整机布局也与传统发动机有很大不同,同时,对变循环的热力循环机理本身尚存在认识上的欠缺,因此,要使变循环发动机成为现实,需突破总体性能、总体结构、控制系统和机构等一系列关键技术,如变循环发动机性能仿真、核心机驱功的风扇级CDFS设计、高效可控涡轮导向器、面积可调涵道导向器、低污染燃烧室、离性能低污染外涵加力燃烧室、反速度场同心环喷管、自适应控制技术、单级高负荷跨音速高压涡轮和双级无导叶对转低压涡轮等。 2100433B
基于Repast的航空发动机维修调度仿真系统
航空发动机维修是一个具有高动态性和高复杂度的商业领域。本文采用多Agent方法对航空发动机维修进行调度仿真。本系统可对等待维修的飞机数量、周转时间和维修生产线利用率等关键指标进行分析,从而为航空发动机维修提供可靠的决策支持。同时,本系统以动态脚本的方式支持多种发动机可靠度估计算法,增加系统的可扩展度。最后,通过多个案例验证本系统的有效性。
基于知识的航空发动机设计集成技术
基于知识的航空发动机设计集成技术
从飞机/发动机设计理念可知,对于持续高马赫数飞行任务,需要高单位推力的涡喷循环。反之,如果任务强调低马赫数和长航程,就需要低耗油率的涡扇循环。当任务兼有超声速飞行和亚声速飞行或存在多设计点时,麻烦就出现了。为任务的某一部分设计的循环在飞行包线其他地方的性能就差。在燃油消耗几乎均分在超声速和亚声速飞行的混合任务中或在多工作点是必须的情况下,变循环发动机(VCE)显示出巨大的潜力。
当黑鸟的心脏,J58发动机咆哮的时候,很少有人能不为之动容,J58也是变循环发动机,却与GE走的不是一个路子。J58是在涡轮喷气和压气机辅助冲压发动机之间转换的变循环。PW(普拉特惠特尼公司)在上个世纪五六十年代开发的这个发动机使黑鸟以三点二倍音速的速度持续飞行。直到几十年后今天,黑鸟仍保持着使用空气发动机的载人飞机的官方最快速度记录。
J58照片中,可以清楚地看到有三个粗大的管子,它们一端连接在发动机压气机的位置、另外一端连接在发动机加力燃烧室,J58的另一侧有同样的三个管子,这六个粗大的管子叫涡轮旁路管道,它们起自J58的第四级与第五级压气机之间,终于涡轮后面、加力燃烧室之前。在活门的作用下,这些涡轮旁路通道使得J58得以在涡喷和冲压发动机模式之间转换。发动机上方的管路就是涡轮旁路通道(Compressor Bleed Air Bypass Turbines)。这个通道在第四级和第五级压气机之间与发动机通过内部排气活门(Internal Bleed)连接、然后终止于加力燃烧室(Afterburner Section)。在内部排气活门(Internal Bleed)后面的外部排气活门(External Bleeds),其作用是调节涡轮旁路通道中的气压。
当黑鸟在低速飞行时,内部排气活门关闭,压气中所有气流进入主燃烧室,以典型的涡轮喷气方式工作。
当黑鸟以三倍音速飞行时,内部排气活门开启,前四级压气机中的一部分气流通过内部活门进入涡轮旁路通道,直接进入加力燃烧室。这些经前四级压气机压缩的空气在加力燃烧室中为加力燃烧室喷出的燃料提供燃烧的氧气,从而使J58以压气机辅助冲压发动机方式工作。
F120是美国空军F-22先进战术战斗机的候选发动机,GE公司编号为GE37,加力推力15880千克,涵道比是0~0.35。它是美国空军和海军在1983~1990年主持的SCR、ATEGG、JTDE和ManTech等一系列计划的产物。
F120是一种能满足先进战术战斗机的高单位推力和部分功率状态低耗油率相互矛盾要求的双涵VCE,其基本结构是一台对转涡轮的双转子涡扇发动机。低压涡轮驱动两级风扇,高压涡轮驱动5级压气机(含CDFS)。两个涡轮对转,都是单级设计,无级间导向器。控制系统为三余度多变量FADEC。
它能够以单涵和双涵模式工作。
在亚声速巡航的低功率状态,发动机以双涵(涡扇)模式工作。被动作动旁路系统由第二级风扇和CDFS涵道之间的压差打开,使更多的空气进入外涵道,同时使风扇具有大的喘振裕度。此时,后VABI也打开,更多的外涵空气引射进入主排气流,使推力增大。
在超声速巡航的高功率状态,发动机以单涵(涡喷)模式工作。在此模式下,后VABI关小到使涡轮框架、加力燃烧室内衬和尾喷管内衬前后保持正的风扇冷却气流压差。当后VABI关小时,外涵中的压力增加,直到超过第二级风扇排气压力为止。在反压作用下,旁路系统模式选择活门关闭,迫使空气进入核心机。有少量空气从CDFS后引出,供加力燃烧室和喷管冷却以及飞机引气用。发动机顺利进入涡喷模式。
F120的最终结构经过三个阶段的发展。第一阶段用XF120进行地面试验,验证了基本循环的灵活性、性能特性、涡轮温度能力和失速裕度以及FADEC和二元矢量喷管的工作。第二阶段用YF120进行飞行试验。第三阶段的F120吸取了XF120和YF120计划的所有经验教训。YF120的流量比XF120的大,以满足不断增加的机体需求和喷管冷却要求。重量和复杂性被减到最小,而保障性始终作为一个关键设计目标。在F-22的原型机试验计划中,YF120成功地在YF-22和YF-23上飞行。它达到了重量、寿命、适用性和性能目标。它还达到或超过严格的最大不加力超声速巡航推力目标。
F120自然是从XF120地面试验和YF120飞行试验成功的基础上发展起来的。在F120上,用一个被动旁路系统代替了可调模式选择活门。对叶轮机作了改进,以改善匹配特性和效率。控制系统简化到了常规涡扇发动机的水平。因此,F120在战斗机发动机更低的复杂性的条件下具有固有的灵活性和优良的保障性。它为飞机提供了优良的速度、加速性、机动性和航程能力。
总的来说,F120与GE公司成功的F110系列相比,结构简单得多,零件数少40%。
虽然F120在第四代战斗机的竞争中败给常规的F119,但仍作为替换发动机继续研制。VCE也仍是IHPTET计划的一项重要技术目标。
随着国家经济不断的发展,不论在民用还是军工上航空工业都起着举足轻重的作用。一架飞机要想遨游在蓝天,其必须有足够的动力才能飞行,而为飞机提供动力的装置就是它的航空发动机,航空发动机是整架飞机的核心所在,没有它飞机将无法飞行。因此从一台航空发动机的性能上就能看出这架飞机的性能。航空发动机作为一种生活中必不可少的尖端产品,航空发动机的发展对国家的科技水平和国防领域起着重要性作用,它标志着一个国家科技、工业和国防的综合实力。
随着航空发动机不断的发展,不仅要提高它的推力,同时可靠性、寿命、对周围环境的适应性也同样重要。当我们要采用一种新技术开发时或对现役发动机进行更新、换代时,都必须对航空发动机展开试验。通过对发动机的测试能够得出许多理论计算得不到的性能指标,还可以获得外部环境对发动机主要技术参数的影响等。
随着科技的发展,当我们要研发一种新型号的航空发动机时,研发出的发动机必须具有高可靠性和高性能,因此设计出的航空发动机结构都比较复杂,材料也比较特殊。按照一般的研制过程,从方案设计到研制成功再到交付使用,发动机至少需要试验五年以上的时间,而且一台发动机上主系统的试验就需要数万小时以上,外加发动机各个子系统和零部件的试验时间,一台发动在试验台上所试验的时间就高达十万小时以上。因此在研制航空发动机时拥有一台先进的实验试车台是非常重要的。
航空发动机试车台是在研发发动机时所需要的重要设备,该系统能够对发动机进行定型、测量重要数据等试验,它能综合分析航空发动机的性能,是否达到其标准。而且到一台航空发动机损坏或者需要维护的时候,往往都需要修理完毕后送到试车台上进行测试,当测试合格后才能安装回飞机内部。研制航空发动机的试车台系统是一个相对复杂而且繁琐的控制系统,在整个系统中根据其作用不同,各个部分实现的功能不同,其中航空发动机试车台的燃油控制系统就隶属于其中的一个子系统。它也是试车台试验设备中的一个非常重要组成部分。