选择特殊符号
选择搜索类型
请输入搜索
在UMTS结构中包括一通用无线接入网,UMTS无线接入网(URAN)。URAN可以有多种不同的实现方式。根据不同的条件和环境,即可以利用已有的接入网通过进化来实现,也可利用先进的技术实现全新的接入网。UTRAN(UMTS Terrestrial Radio Access Network)是UMTS的陆地无线接入网(URAN)。它是第三代移动通信技术UMTS最重要的一种接入方式,并且适用范围最广。
UTRAN - UMTS Terrestrial Radio Access Network - UMTS 陆地无线接入网。UTRAN 是一种全新的接入网,是UMTS 最重要的一种接入方式,适用范围最广。UTRAN由NODE B和无线网络控制器(RNC)构成,NODE B相当于GSM BTS,RNC相当于GSM BSC。第三代移动通信(3g)可提供话音、数据、图像等多媒体业务,采用几种主要的空中接口,数据速率高达144 kbit/s~2 mbit/s,终端多种多样,实现全球无缝连接。3g由核心网(CN)、UMTS 陆地无线接入网(UTRAN)、用户设备(UE)三大部分组成,CN主要完成用户认证、位置管理、呼叫连接控制、用户信息传送等功能。
UTRAN分为无线不相关和无线相关两部分,前者完成与CN 的接口,实现向用户提供QOS 保证的信息处理和传送以及用户和网络控制信息的处理和传送;无线相关部分处理与UE 的无线接入(用户信息传送、无线信道控制、资源管理等)。UE 主要完成无线接入、信息处理等。UTRAN 可使用ATM 和IP 两种传送方式,基于ATM 的UTRAN 标准较成熟,相关产品已进入试用阶段;基于IP 的UTRAN 具有网络资源利用率高、节省运营成本、满足INTERNET 和内联网的广泛使用引起的IP 联网设备的降价要求、符合网络向全ip方向发展趋势等优点,引起研究的热潮。
系统接入是UMTS用户连接到UMTS以便使用UMTS业务的方法。用户系统接入的发起者即可以是移动端,也可以是网络端。UMTS 最重要的一种接入方式。充当UMTS最重要接入方式的UTRAN总体上具有以下通信功能:
用户数据传输(业务和多呼叫)全系统访问控制移动性管理无线资源管理控制广播和多播业务管理UTRAN 的能力包括无线接入承载能力和无线接入承载控制,支持具有个问的业务和性能特性的无线资源连接的建立、重新协商和释改,QoS属性与承载属性的重新协商可能由卜层请求或无线条件(切换、蜂窝负载的改动等)引起,也可由移动站或网络发起。UTRAN将允许一个移动终端同时处理多个无线接入承载业务,每个无线接入承载业务可能有各自的速率和性能要求,但同时处理无线接入承载业务的数量将受到终端和网络能力的限制,UTRAN还将支持广播和组播应用的无线接入承载。
UTILAN具有下列业务量管理机制:
在连接建立和重新协商时应用允许接入控制(CAC)
在连接建立后应用使用参数控制(UPC)。
对于由具有不同UTILA模式的UTRAN一组成的UMTS网络,蜂窝选择和寻呼过程应允许业务区域由支持一种特定模式的蜂窝覆盖或由支持多种模式的蜂窝覆盖。UMTS网络运营商的网络应支持能处理一个或多个无线接入承载业务的移动终端的双向切换,这种切换是在具有不同UTKA模式的两个UTRAN蜂窝间进行的。另外,使用两种不同UTILA模式的蜂窝间的切换应类似于同种模式间的切换。UTILAN还将支持一个移动终端的无线接入承载业务在UTKANr的蜂窝间无缝切换。UTILAN应使UMTS移动终端位置的确定更容易,可利用各种方法完成定位功能,如基于移动终端的定位、基于网络的定位或混合定位结构。在各种无线环境下,最低的定位精度大约是50m。UTILAN应支持局部业务区域(LSA)的概念,这将使基于局部业务区域和用户有关的无线资源选择更容易。
在UMTS结构中包括一通用无线接入网,UMTS无线接入网(URAN)。URAN可以有多种不同的实现方式。根据不同的条件和环境,即可以利用已有的接入网通过进化来实现,也可利用先进的技术实现全新的接入网。UTRAN(UMTS Terrestrial Radio Access Network)是UMTS的陆地无线接入网(URAN)。它是第三代移动通信技术UMTS最重要的一种接入方式,并且适用范围最广。
路易勒格朗中学(音译:路易勒格朗中学,意译:路易大帝高中,法语:Lycée Louis le Grand,简称:LLG)位於巴黎五区圣雅克路123号,在拉丁区中心。它设在原十六世纪耶稣会执掌的克莱蒙中...
Whatistheroleofcertifiedtranslatorsincreatingaccuratebiddocumenttranslati?
Certifiedtranslatorshavespecializedtrainingandadheretostrictqualitystandards,ensuringthetranslatedco...
Whatstepsdostakeholderstaketoensureafairandtransparenttenderprocess?
Stakeholdersensurefairnessbyprovidingclearinstructi,adheringtoprocurementprocedures,monitoringbiddin...
UTRAN的网络架构如图2所示。
UMTS网络(Release 99 )由两部分组成:一部分是UTRAN。另一部分是核心网络CN,这两部分通过Iu接口连接,核心网从逻辑上可分为电路交换域(CS)和分组交换域(PS)、CS域是UMTS的电路交换核心网,用于支持电路数据业务,PS 域是UMTS的分组业务核心网,用于支持分组数据业务(GPRS)和一些多媒体业务。根据UTRAN连接到核心网逻辑域的不同,Iu可分为Iu-CS和Iu-PS,其中Iu-CS是UTRAN与CS域的接口,Iu-PS是UTRAN与PS域的接口,UTRAN包括多个无线网络子系统RNS。
无线网络子系统RNS 包括无线网络控制器RNC和一个或多个基站NodeB,NodeB 和RNC 通过Iub 接口互联.在UTRAN 内,不同的RNC 通过Iur接口互联,Iur 可以通过RNC 之间的直接物理连接或通过传输网连接。NodeB 相当于GSM 网络中的基站收发信台(BTS),它可采用FDD、TDD模式或双模式工作,每个NodeB服务于一个无线小区,提供无线资源的接入功能。RNC相当于GSM网络中的基站控制器(BSC),提供无线资源的控制功能。
RNS 负责它范围内的蜂窝所需资源。对于用户设备和UTRAN间的每个连接,有一个RNS为服务RNS。若需要,漂移(Drift)RNSs可提供无线资源来支持服务RNS。
BASFLuransASAASA+PC
BASFLuransASAASA+PC
NASTRAN程序在高层建筑动力特性分析中的应用
利用大型通用计算软件MSC/NASTRAN和MSC/PATRAN,采用一个三维有限元模型对建筑物的固有频率和固有振型的计算和研究,并将计算结果与安徽省建筑设计院所提供的二维模型计算结果进行了比较.结果表明在分析中必须同时考虑柱、梁和楼板的物理特性和几何特性才能得到较好地模拟建筑物的动力学特性.同时发现考虑水平方向振动的各阶振型基本对应自由振动下的某一振型.采用二维模型进行分析时必须注意会失去某些方向的固有频率和固有振型.
URA(UTRAN Registration Area)是UTRAN内部区域的划分适用于UE处于RRC连接状态的情形,而且只能在UTRAN端使用(比如由UTRAN发起的寻呼)。一个URA包含了一个或多个Cell,具体由运营商决定。RNC有很多功能,其中一个功能为移动性管理。其包括:
●小区更新 支持RNC内部、RNC之间Cell Update、URA Update。
●小区切换(硬切换和接力切换(TD-SCDMA)) —支持RNC内部、RNC之间的切换控制。 —支持系统间、RAT之间的硬切换。
●SRNC重定位功能
CFN的数值与TBS相关联,CFN与TBS一同通过MAC-L1的SAP。对于同步传输信道重配置,CFN提供了公共帧号的参考。CFN的持续周期要比允许的最大MAC与L1之间的延迟大(在UTRAN侧,基站和RNC间的传输信道同步控制在基站端完成)。
总的来说,BFN和RFN是网元内部的计数器;SFN是终端和Node B间的计数器,用于空口上的同步;CFN是终端和UTRAN建立连接后得到的计数器,用于传输层同步。
LTE(LongTermEvolution,长期演进),又称E-UTRA/E-UTRAN,和3GPP2UMB合称E3G(Evolved3G)
LTE是由3GPP(The3rdGenerationPartnershipProject,第三代合作伙伴计划)组织制定的UMTS(UniversalMobileTelecommunicationsSystem,通用移动通信系统)技术标准的长期演进,于2004年12月在3GPP多伦多TSGRAN#26会议上正式立项并启动。LTE系统引入了OFDM(OrthogonalFrequencyDivisionMultiplexing,正交频分复用)和MIMO(Multi-Input&Multi-Output,多输入多输出)等关键传输技术,显著增加了频谱效率和数据传输速率(20M带宽2X2MIMO在64QAM情况下,理论下行最大传输速率为201Mbps,除去信令开销后大概为140Mbps,但根据实际组网以及终端能力限制,一般认为下行峰值速率为100Mbps,上行为50Mbps),并支持多种带宽分配:1.4MHz,3MHz,5MHz,10MHz,15MHz和20MHz等,且支持全球主流2G/3G频段和一些新增频段,因而频谱分配更加灵活,系统容量和覆盖也显著提升。LTE系统网络架构更加扁平化简单化,减少了网络节点和系统复杂度,从而减小了系统时延,也降低了网络部署和维护成本。LTE系统支持与其他3GPP系统互操作。LTE系统有两种制式:FDD-LTE和TDD-LTE,即频分双工LTE系统和时分双工LTE系统,二者技术的主要区别在于空中接口的物理层上(像帧结构、时分设计、同步等)。FDD-LTE系统空口上下行传输采用一对对称的频段接收和发送数据,而TDD-LTE系统上下行则使用相同的频段在不同的时隙上传输,相对于FDD双工方式,TDD有着较高的频谱利用率。
LTE/EPC的网络架构如图2所示。
LTE采用由eNB构成的单层结构,这种结构有利于简化网络和减小延迟,实现低时延、低复杂度和低成本的要求。与3G接入网相比,LTE减少了RNC节点。名义上LTE是对3G的演进,但事实上它对3GPP的整个体系架构作了革命性的改变,逐步趋近于典型的IP宽带网络结构。
LTE的架构也叫E-UTRAN架构,如图3所示。E-UTRAN主要由eNB构成。同UTRAN网络相比,eNB不仅具有NodeB的功能,还能完成RNC的大部分功能,包括物理层、MAC层、RRC、调度、接入控制、承载控制、接入移动性管理和Inter-cellRRM等。eNodeB和eNodeB之间采用X2接口方式直接互连,eNB通过S1接口连接到EPC。具体地讲,eNB通过S1-MME连接到MME,通过S1-U连接到S-GW。S1接口支持MME/S-GW和eNB之间的多对多连接,即一个eNB可以和多个MME/S-GW连接,多个eNB也可以同时连接到同一个MME/S-GW。