选择特殊符号
选择搜索类型
请输入搜索
2.1 焊接材料
针对15CrMo钢的焊接性及现场高压管道的工作特点,根据以往的经验,参照国外提供的焊接工艺卡,我们选择了两种方案进行焊接试验。
方案Ⅰ:焊接预热,采用ER80S-B2L焊丝,T1G焊打底,E8018-B2焊条,焊条电弧焊盖面,焊后进行局部热处理。
方案Ⅱ:采用ER80S-B2L焊丝,T1G焊打底,E309Mo-16焊条,焊条填充电弧焊盖面,焊后不进行热处理。焊丝和焊条的化学成分及力学性能见表1。
表1 焊接材料的化学成分和力学性能
型号 C Mn Si Cr Ni Mo S P δb/Mpa δ,%
ER80S-B2L≤0.05 0.70.41.2 <0.20.5 ≤0.025 ≤0.025 ≤500 25
E8018-B2 0.070.7 0.3 1.1 0.5 ≤0.04 ≤0.03 550 19
E309Mo-16≤0.12 0.5~2.5 0.9 22.0~25.0 12.0~14.0 2.0~3.0≤0.025≤0.035 550 25
2.2 焊前准备
试件采用15CrMo钢管,规格为φ325×25,坡口型式及尺寸见图1。
焊前用角向磨光机将坡口内外及坡口边缘50mm范围内打磨至露出金属光泽,然后用丙酮清洗干净。
试件为水平固定位置,对口间隙为4mm,采用手工钨极氩弧焊沿园周均匀点焊六处,每处点固长度应不小于20mm。焊条按表2的规范进行烘烤。
表2 焊条烘烤规范
焊条型号 烘烤温度 保温时间
E8018-B2 300 ℃ 2h
E309Mo-16 150 ℃ 1.5h
2.3 焊接工艺参数
按方案Ⅰ焊前需进行预热,根据Tto-Bessyo等人提出的计算预热温度公式:
To=350√[C]-0.25(℃) 式中,To——预热温度,℃。
[C]=[C]x [C]p [C]p=0.005S[C]x
[C]x=C (Mn Cr)/9 Ni/18 7Mo/90 式中,
[C]x——成分碳当量;
[C]p——尺寸碳当量; S——试件厚度(本文中S=25mm);
[C]x=C (Mn Cr)/9 7/90Mo=0.361
[C]p=0.045 则To=138℃
因此预热温度选为150℃。采用氧-乙炔焰对试件进行加温,先用测温笔粗略判断试件表面的的温度(以笔迹颜色变化快慢进行估计),最后用半导体点温计测定,测量点至少应选择三点,以保证试件整体均达到所要求的预热温度。
焊接时,第一层采用手工钨极氩弧焊打底,为避免仰焊处焊缝背面产生凹陷,送丝时采用内填丝法,即焊丝通过对口间隙从管内送入。其余各层采用焊条电弧焊,共焊6层,每个焊层一条焊道。方案Ⅰ和方案Ⅱ的焊接工艺参数见表3、4。按方案Ⅰ焊
表3 方案Ⅰ的焊接工艺参数
焊道名称 焊接方法 焊接材料 焊材规格/mm 焊接电流/A 电弧电压/V 预热及层间温度 热处理规范
打底层 钨板氩弧焊 ER80S-B2L φ2.4 110 12
填充层 焊条电弧焊 E8018-B2 φ3.2 5 85~90 23~25150℃ 715。×75min
盖面层 焊条电弧焊 E8018-B2 φ3.2 5 85~90 23~25
表4 方案Ⅱ的焊接工艺参数
焊道名称 焊接方法 焊接材料 焊材规格/mm 焊接电流/A 电弧电压/V 预热及层间温度 热处理规范
打底层 钨板氩弧焊 ER80S-B2L φ2.4 110 12
填充层 焊条电弧焊 E309Mo-16 φ3.2 90~95 22~24 / /
盖面层 焊条电弧焊 E309Mo-16 φ3.2 90~95 22~24
接时,层间温度应不低于150℃,为防止中断焊接而引起试件的降温,施焊时应由二名焊工交替操作,焊后应立即采取保温缓冷措施。
2.4 焊后热处理
采用方案Ⅰ焊接的试件,焊后应进行局部高温回火处理。热处理的工艺为:升温速度为200℃/h,升到715℃保温1小时15分钟,降温速度100℃/h,降到300℃后空冷。具体采用JL-4型履带式电加热器(1146×310)包绕焊缝,用硅酸铝棉层保温,保温层厚度50mm,温度控制采用DJK-A型电加热器自动控温仪。
焊接材料
针对15CrMo钢的焊接性的工作特点,根据以往的经验,参照国外提供的焊接工艺卡,我们选择了两种方案进行焊接试验。
方案Ⅰ:焊接预热,采用ER80S-B2L焊丝,T1G焊打底,E8018-B2焊条,焊条电弧焊盖面,焊后进行局部热处理。
方案Ⅱ:采用ER80S-B2L焊丝,T1G焊打底,E309Mo-16焊条,焊条填充电弧焊盖面,焊后不进行热处理。焊丝和焊条的化学成分及力学性能见表1。
焊后热处理
采用方案Ⅰ焊接的试件,焊后应进行局部高温回火处理。热处理的工艺为:升温速度为200℃/h,升到715℃保温1小时15分钟,降温速度100℃/h,降到300℃后空冷。具体采用JL-4型履带式电加热器(1146×310)包绕焊缝,用硅酸铝棉层保温,保温层厚度50mm,温度控制采用DJK-A型电加热器自动控温仪。
焊接工艺评定试验结果
试验方案 拉伸试验 弯曲试验 冲击韧性试验aky(J/cm2)
抗拉强度δb/Mpa 断裂部位 弯曲角度 面弯 背弯 焊缝 熔合线 热影响区(HAZ)
方案Ⅰ 550/530 母材 50。 合格 合格 84.8 162 135.6
方案Ⅱ 525/520 母材 50。 合格 合格 79.4 109.2 96.7
焊接材料
针对15CrMo钢的焊接性的工作特点,根据以往的经验,参照国外提供的焊接工艺卡,我们选择了两种方案进行焊接试验。
方案Ⅰ:焊接预热,采用ER80S-B2L焊丝,T1G焊打底,E8018-B2焊条,焊条电弧焊盖面,焊后进行局部热处理。
方案Ⅱ:采用ER80S-B2L焊丝,T1G焊打底,E309Mo-16焊条,焊条填充电弧焊盖面,焊后不进行热处理。焊丝和焊条的化学成分及力学性能见表1。
焊后热处理
采用方案Ⅰ焊接的试件,焊后应进行局部高温回火处理。热处理的工艺为:升温速度为200℃/h,升到715℃保温1小时15分钟,降温速度100℃/h,降到300℃后空冷。具体采用JL-4型履带式电加热器(1146×310)包绕焊缝,用硅酸铝棉层保温,保温层厚度50mm,温度控制采用DJK-A型电加热器自动控温仪。
焊接工艺评定试验结果
试验方案 拉伸试验 弯曲试验 冲击韧性试验aky(J/cm2)
抗拉强度δb/Mpa 断裂部位 弯曲角度 面弯 背弯 焊缝 熔合线 热影响区(HAZ)
方案Ⅰ 550/530 母材 50。 合格 合格 84.8 162 135.6
方案Ⅱ 525/520 母材 50。 合格 合格 79.4 109.2 96.7
天津市雪琰管业有限公司质量好,在高温下具有较高的热强性(δb≥440MPa)和抗氧化性,并具有一定的抗氢腐蚀能力。 地址:天津市滨海新区裕园路136号
你要什么规格的你可以打电话问问天津华力创通钢铁贸易有限公司,这家公司库存1万多吨15crmo合金管,价格不贵,质量好
一吨是3500元。Q345B无缝钢管是一种钢材的材质,按等级可分为Q345A,Q345B,Q345C,Q345D,Q345E。它们所代表的,主要是冲击的温度有所不同。Q345A级,是不做冲击;Q345...
试件焊后按JB4730-94《压力容器无损检测》标准进行100%的超声波探伤检验,焊缝Ⅰ级合格。按JB4708《钢制压力容器焊接工艺评定》标准进行焊接工艺评定试验。评定结果见表5。
表5 焊接工艺评定试验结果
试验方案 拉伸试验 弯曲试验 冲击韧性试验aky(J/cm2)
抗拉强度δb/Mpa 断裂部位 弯曲角度 面弯 背弯 焊缝 熔合线 热影响区(HAZ)
方案Ⅰ 550/530 母材 50。 合格 合格 84.8 162 135.6
方案Ⅱ 525/520 母材 50。 合格 合格 79.4 109.2 96.7
从拉伸试验结果可知,两种方案的拉伸试样全部断在母材,说明焊缝的抗拉强度高于母材;弯曲试验全部合格,说明焊缝的塑性较好。根据表5中的冲击韧性试验结果可知,方案Ⅰ的冲击韧性明显高于方案Ⅱ,证明方案Ⅰ的焊后热处理规范比较理想,高温回火不仅达到了改善接头组织和性能目的,而且使韧性与强度配合适当。从室温机械性能结果可知,所推荐的两种焊接工艺方案均可用于现场施工。方案Ⅰ采用了与母材成分接近的焊条,焊缝性能同母材匹配,焊缝应具有较高的热强性,焊缝在高温下长期使用不易破坏。难点是焊后热处理规范较为严格,回火温度和保温时间及加热和冷却速度控制不当反而会引起焊缝性能下降。方案Ⅱ采用了奥氏体不锈钢焊条施焊,虽然可以省去焊后热处理,但由于焊缝与母材膨胀系数不同,长期高温工作时可发生碳的扩散迁移现象,容易导致焊缝在熔合区发生破坏。因此,从使用可靠性考虑,现场采用方案Ⅰ施焊更为稳妥。
15CrMo钢厚壁高压管的焊接采用两种焊接方案均为可行。为了保证焊缝性能同母材匹配且具有较高的热强性,采用方案Ⅰ效果更佳,关键是要严格控制焊后热处理工艺。
方案Ⅱ虽可省去焊后热处理,但焊缝在高温下发生碳的迁移扩散而导致焊缝破坏的可能性不容忽视,因此,只有在焊后无法进行热处理时才慎重采用。
针对15CrMo钢的焊接性及现场高压管道的工作特点,根据以往的经验,参照国外提供的焊接工艺卡,我们选择了两种方案进行焊接试验。
方案Ⅰ:焊接预热,采用ER80S-B2L焊丝,T1G焊打底,E8018-B2焊条,焊条电弧焊盖面,焊后进行局部热处理。
方案Ⅱ:采用ER80S-B2L焊丝,T1G焊打底,E309Mo-16焊条,焊条填充电弧焊盖面,焊后不进行热处理。焊丝和焊条的化学成分及力学性能见表1。
表1 焊接材料的化学成分和力学性能
型号 C Mn Si Cr Ni Mo S P δb/Mpa δ,%
ER80S-B2L≤0.05 0.70.41.2 <0.20.5 ≤0.025 ≤0.025 ≤500 25
E8018-B2 0.070.7 0.3 1.1 0.5 ≤0.04 ≤0.03 550 19
E309Mo-16≤0.12 0.5~2.5 0.9 22.0~25.0 12.0~14.0 2.0~3.0≤0.025≤0.035 550 25
试件采用15CrMo钢管,规格为φ325×25,坡口型式及尺寸见图1。
焊前用角向磨光机将坡口内外及坡口边缘50mm范围内打磨至露出金属光泽,然后用丙酮清洗干净。
试件为水平固定位置,对口间隙为4mm,采用手工钨极氩弧焊沿园周均匀点焊六处,每处点固长度应不小于20mm。焊条按表2的规范进行烘烤。
表2 焊条烘烤规范
焊条型号 烘烤温度 保温时间
E8018-B2 300 ℃ 2h
E309Mo-16 150 ℃ 1.5h
按方案Ⅰ焊前需进行预热,根据Tto-Bessyo等人提出的计算预热温度公式:
To=350√[C]-0.25(℃) 式中,To--预热温度,℃。
[C]=[C]x [C]p [C]p=0.005S[C]x
[C]x=C (Mn Cr)/9 Ni/18 7Mo/90 式中,
[C]x--成分碳当量;
[C]p--尺寸碳当量; S--试件厚度(本文中S=25mm);
[C]x=C (Mn Cr)/9 7/90Mo=0.361
[C]p=0.045 则To=138℃
因此预热温度选为150℃。采用氧-乙炔焰对试件进行加温,先用测温笔粗略判断试件表面的的温度(以笔迹颜色变化快慢进行估计),最后用半导体点温计测定,测量点至少应选择三点,以保证试件整体均达到所要求的预热温度。
焊接时,第一层采用手工钨极氩弧焊打底,为避免仰焊处焊缝背面产生凹陷,送丝时采用内填丝法,即焊丝通过对口间隙从管内送入。其余各层采用焊条电弧焊,共焊6层,每个焊层一条焊道。方案Ⅰ和方案Ⅱ的焊接工艺参数见表3、4。按方案Ⅰ焊
表3 方案Ⅰ的焊接工艺参数
焊道名称 焊接方法 焊接材料 焊材规格/mm 焊接电流/A 电弧电压/V 预热及层间温度 热处理规范
打底层 钨板氩弧焊 ER80S-B2L φ2.4 110 12
填充层 焊条电弧焊 E8018-B2 φ3.2 5 85~90 23~25150℃ 715。×75min
盖面层 焊条电弧焊 E8018-B2 φ3.2 5 85~90 23~25
表4 方案Ⅱ的焊接工艺参数
焊道名称 焊接方法 焊接材料 焊材规格/mm 焊接电流/A 电弧电压/V 预热及层间温度 热处理规范
打底层 钨板氩弧焊 ER80S-B2L φ2.4 110 12
填充层 焊条电弧焊 E309Mo-16 φ3.2 90~95 22~24 / /
盖面层 焊条电弧焊 E309Mo-16 φ3.2 90~95 22~24
接时,层间温度应不低于150℃,为防止中断焊接而引起试件的降温,施焊时应由二名焊工交替操作,焊后应立即采取保温缓冷措施。
采用方案Ⅰ焊接的试件,焊后应进行局部高温回火处理。热处理的工艺为:升温速度为200℃/h,升到715℃保温1小时15分钟,降温速度100℃/h,降到300℃后空冷。具体采用JL-4型履带式电加热器(1146×310)包绕焊缝,用硅酸铝棉层保温,保温层厚度50mm,温度控制采用DJK-A型电加热器自动控温仪。
试件焊后按JB4730-94《压力容器无损检测》标准进行100%的超声波探伤检验,焊缝Ⅰ级合格。按JB4708《钢制压力容器焊接工艺评定》标准进行焊接工艺评定试验。评定结果见表5。
表5 焊接工艺评定试验结果
试验方案 拉伸试验 弯曲试验 冲击韧性试验aky(J/cm2)
抗拉强度δb/Mpa 断裂部位 弯曲角度 面弯 背弯 焊缝 熔合线 热影响区(HAZ)
方案Ⅰ 550/530 母材 50。 合格 合格 84.8 162 135.6
方案Ⅱ 525/520 母材 50。 合格 合格 79.4 109.2 96.7
从拉伸试验结果可知,两种方案的拉伸试样全部断在母材,说明焊缝的抗拉强度高于母材;弯曲试验全部合格,说明焊缝的塑性较好。根据表5中的冲击韧性试验结果可知,方案Ⅰ的冲击韧性明显高于方案Ⅱ,证明方案Ⅰ的焊后热处理规范比较理想,高温回火不仅达到了改善接头组织和性能目的,而且使韧性与强度配合适当。从室温机械性能结果可知,所推荐的两种焊接工艺方案均可用于现场施工。方案Ⅰ采用了与母材成分接近的焊条,焊缝性能同母材匹配,焊缝应具有较高的热强性,焊缝在高温下长期使用不易破坏。难点是焊后热处理规范较为严格,回火温度和保温时间及加热和冷却速度控制不当反而会引起焊缝性能下降。方案Ⅱ采用了奥氏体不锈钢焊条施焊,虽然可以省去焊后热处理,但由于焊缝与母材膨胀系数不同,长期高温工作时可发生碳的扩散迁移现象,容易导致焊缝在熔合区发生破坏。因此,从使用可靠性考虑,现场采用方案Ⅰ施焊更为稳妥。
电厂高压锅炉用15CrMoG无缝钢管中钼分析方法研究
15CrMoG无缝钢管是一种大量使用的高压锅炉钢管。本文基于钼与硫氰酸钠的显色反应,建立了光度法测定15CrMoG无缝钢管样品中钼的方法。采用硫酸-磷酸混合酸溶解试样,在硫酸-高氯酸介质中以氯化亚锡为还原剂,钼与硫氰酸钠生成橙红色络合物,测量其吸光度,吸光度与钼含量在质量分数0.11%—0.89%范围内呈线性关系。本法采用更接近于真实样品的标钢溶液建立校准曲线,实验表明,该方法准确、简便。测定了不同厂家15CrMoG无缝钢管中的钼,测定结果满意。
15crmog高压合金管理论重量规格表
15crmog 高压合金管理论重量规格表 规格 规格 规格 规格 锅炉管高压合金 管热线 13820129962 022-60960782 022-81242272 (1)GB3087-2008 《低中压锅炉用 无缝钢管》规定。 化学成分试验方 法按 GB222-84 及 GB223《钢铁 及合金化学分析 方法》中的有关 部分。 (2)GB5310-2008 《高压锅炉用无 缝钢管》规定。 化学成分试验方 法按 GB222-84 及《钢铁及合金 化学分析方法》 、 GB223《钢铁及合 金化学分析方 法》中的有关部 分。 (3) 进口锅 炉钢管的化学成 分检验按合同规 定的有关标准进 行。 13820129962 022-60960783 022-60960782 锅炉管采用钢 号 (1) 优质碳 素结构钢钢号有 20G、20MnG、 25MnG。 (2) 合金结 构钢钢号 15M
无缝管15CrMoG纯化氢的原理是,在300—500℃下,把待纯化的氢通入无缝管15CrMoG的一侧时,氢被吸附在无缝管15CrMoG壁上,由于钯的4d电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应是可逆的),在钯的作用下,氢被电离为质子其半径为1.5×1015m,而钯的晶格常数为3.88×10-10m(20℃时),故可通过无缝管15CrMoG,在钯的作用下质子又与电子结合并重新形成氢分子,从15CrMoG合金钢管的另一侧逸出。在无缝管15CrMoG表面,未被离解的气体是不能透过的,故可利用无缝管15CrMoG获得高纯氢。
虽然钯对氢有独特的透过性能,但纯钯的机械性能差,高温时易氧化,再结晶温度低,易使无缝管15CrMoG变形和脆化,故不能用纯钯作透过膜。在钯中添加适量的IB族和Ⅷ族元素,制成钯合金,可改善钯的机械性能11.汽车半轴套管用无缝钢管(GB3088-82)是制造汽车半轴套管及驱动桥桥壳轴管用的优质碳素结构钢和合金结构钢热轧无缝钢管钯合金中,银约占20—30%,其他成分(如金等)的含量<5%。
国外同类型钢种,有前苏联的15XM,美国牌号T12、P12,日本牌号STBA22、STPA22和德国牌13CrMo44
等。
15CrMoG高压合金管正常供货状态的显微组织为铁素体加珠光体,15CrMoG高压合金管在工作温度500℃-550℃范围长期运行过程中,会产生珠光体的球化、合金元素在固溶体和碳化物间的再分配及碳化物相结构的改变,15CrMoG高压合金管的热强性能和力学性能随着珠光体球化程度和固溶体是合金元素贫化程度的加大而逐渐降低,以致材质渐趋劣化甚至失效。因此,长期以来15CrMoG高压合金管组织中珠光体球化程度常被广泛用于判定该类钢使用可靠性的重要判据之一。
在高速流动的液体的空化作用下,能耐气蚀的钢称为耐气蚀15CrMoG高压合金管。空化气蚀现象产生的原因是液体在流动过程中遇到分支、旋转或振动时,形成导致空穴或气泡产生的低压区,由于空穴的形成和破灭极其迅速,并产生强烈的冲击波。冲击波的强度和频次,在一个微小的低压区中,每秒可能有二百万个空穴破灭,它对材料的应变波的压力可达1.5GPa,因而致使15CrMoG高压合金管表面产生破坏。
在工程技术中,这种破坏现象在水轮机、泵以及船舶螺旋桨上经常发现。所以合理选择和设计耐气蚀钢是十分必要的。
许多经验表明,为使15CrMoG高压合金管具有耐气蚀性,15CrMoG高压合金管应具高的强度、硬度以及良好韧性与耐疲劳性的配合。
作为耐气蚀15CrMoG高压合金管基本采用铬和铬镍不锈钢。当钢中含铬12%~13%已有较好耐气蚀性能,并以碳强化提高其抗气蚀性,原捷克斯洛伐克在1931年已在水轮机叶片使用了含碳0.3%的铬13不锈钢、前苏联50年代亦采用了2Cr13不锈钢叶片,由于此类钢焊接性差,即使改用1Crl3不锈钢其焊接仍较困难。所以为了提高钢的强韧性、适应水轮机组大型化发展的要求,在原用钢类基础上降碳加镍已成为国际上耐气蚀15CrMoG高压合金管发展的共同趋势,20世纪50年代末期在水轮机上已应用含镍1%的美国CAl5不锈钢;随后进一步发展了以低碳马氏体为基体、含镍大于4%,并在回火后还含有部分逆变奥氏体的复相钢,因而大大改善了15CrMoG高压合金管的可焊性与韧性,瑞典包沃斯公司随之以2RM2及2RMo钢命名而使之商品化了。前苏联亦发展了一系列含铜钢种,如1978年兴建的萨彦舒申斯克水电站65/71万kw机组就应用了06Cr12Ni3Cu和00Cr12Ni3cu不锈钢转轮。此外,19840年联邦德国和日本亦分别发展了低碳16cr-5Ni、17Cr-5Ni-1Mo马氏体不锈钢,此类钢具有M y a三相组织,比13Cr-Ni4钢有较高的抗疲劳及焊接性能以及相近的抗气蚀;同样,中国在70年代为水电水轮机研制并采用了同类型ZGOCrl3Ni4Mo,、0Cr13Ni6Mo、G-817、s-135 马氏体高强不锈钢,使用效果良好。
在海水中,不锈钢具有极佳的耐气蚀能力,奥氏体不锈钢被推荐用于泵叶轮、船舶螺旋桨。如美国304和Carpenter20Cb3不锈钢则适用于制造海水泵、304钢广泛用于声纳圆顶。
15CrMoG、12Cr2MoG、12Cr1MoVG、12Cr2MoWVTiB、10Cr9Mo1VNb、SA210A1、SA210C、SA213 T11、SA213 T12、SA213 T22、SA213 T23、SA213 T91、SA213 T92、ST45.8/Ⅲ、15Mo3、13CrMo44、10Cr
标准 |
牌号 |
抗拉强度(MPa) |
屈服强度(MPa) |
伸长率(%) |
硬度 |
GB3087 |
10 |
335~475 |
≥195 |
≥24 |
/ |
20 |
410~550 |
≥245 |
≥20 |
/ |
|
GB5310 |
20G |
410~550 |
≥245 |
≥24 |
/ |
20MnG |
≥415 |
≥240 |
≥22 |
/ |
|
25MnG |
≥485 |
≥275 |
≥20 |
/ |
|
15CrMoG |
440~640 |
≥235 |
≥21 |
/ |
|
12Cr2MoG |
450~600 |
≥280 |
≥20 |
/ |
|
12Cr1MoVG |
470~640 |
≥255 |
≥21 |
/ |
|
12Cr2MoWVTiB |
540~735 |
≥345 |
≥18 |
/ |
|
10Cr9Mo1VNb |
≥585 |
≥415 |
≥20 |
/ |
|
ASME SA210 |
SA210A-1 |
≥415 |
≥255 |
≥30 |
≤143HB |
SA210C |
≥485 |
≥275 |
≥30 |
≤179HB |
|
ASME SA213 |
SA213 T11 |
≥415 |
≥205 |
≥30 |
≤163HB |
SA213 T12 |
≥415 |
≥220 |
≥30 |
≤163HB |
|
SA213 T22 |
≥415 |
≥205 |
≥30 |
≤163HB |
|
SA213 T23 |
≥510 |
≥400 |
≥20 |
≤220HB |
|
SA213 T91 |
≥585 |
≥415 |
≥20 |
≤250HB |
|
SA213 T92 |
≥620 |
≥440 |
≥20 |
≤250HB |
|
DIN17175 |
ST45.8/Ⅲ |
410~530 |
≥255 |
≥21 |
/ |
15Mo3 |
450~600 |
≥270 |
≥22 |
/ |
|
13CrMo44 |
440~590 |
≥290 |
≥22 |
/ |
|
10CrMo910 |
480~630 |
≥280 |
≥20 |
/ |